计算机工程

• 图形图像处理 • 上一篇    下一篇

运动目标检测中基于灰度特征模型的背景消除方法

亚森·艾则孜1,艾山·吾买尔2   

  1. (1. 新疆警察学院信息安全工程系,乌鲁木齐830013; 2. 新疆大学信息科学与工程学院,乌鲁木齐830046)
  • 收稿日期:2014-07-17 出版日期:2015-06-15 发布日期:2015-06-15
  • 作者简介:亚森·艾则孜(1975 - ),男,教授,主研方向:视频取证,信息安全,自然语言处理;艾山·吾买尔,副教授、博士。
  • 基金项目:

    国家社会科学基金资助项目(13CFX055);新疆维吾尔自治区高校科研计划科学研究基金资助重点项目(XJEDU2013I34)。

Background Subtraction Method Based on Gray Feature Model in Moving Target Detection

Yasen Aizezi 1,Aishan Wumaier 2   

  1. (1. Department of Information Security & Engineering,Xinjiang Police College,Urumqi 830013,China; 2. College of Information Science & Engineering,Xinjiang University,Urumqi 830046,China)
  • Received:2014-07-17 Online:2015-06-15 Published:2015-06-15

摘要:

针对视频监控中运动目标检测时间复杂度高的问题,提出一种基于灰度特征模型的背景消除方法。通过提取视频图像像素的灰色特征,将视频图像中每个位置上的像素点用一个灰度特征集合来表征,并以此为依据计算各像素点灰度值与灰度特征集合中的像素点灰度值之间的距离,判别对应像素点的背景与前景状态,从而实现视频图像的背景消除。实验结果表明,该方法在处理效果接近的情况下,可以显著提升运动目标的检测速度,降低处理的时间复杂度。

关键词: 运动目标检测, 视频监控, 背景消除, 灰度特征模型, 特征分析

Abstract:

In the respect of moving target detection,focused on the high complexity of present algorithms,a gray feature model-based background subtraction method is proposed. By extracting the gray features of the pixels in the video image, the pixel of the video image can be presented by a set of gray features,which is taken as a basis for determining the background / foreground state of the corresponding pixel in the video image by computing the distance between the gray value of the pixel in the video image and the gray value of the pixel in the gray feature set. Experimental results show that,the gray feature model-based background subtraction method can significantly enhance the processing speed and reduce the time complexity of the moving target detection,in case of the same detecting results.

Key words: moving target detection, video surveillance, background subtraction, gray feature model, feature analysis

中图分类号: