[1] Cristianini N, Taylor J S. Kernel Methods for Pattern Analysis[M]. Cambridge, UK: Cambridge University Press, 2004.[2] Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining Knowledge Discovery, 1998, 2(2): 121-167.[3] Schokopf B, Smola A J. Learning with Kernels[M]. Cambridge, USA: MIT Press, 2002.[4] Vapnik V. The Nature of Statistical Learning Theory[M]. New York, USA: Springer, 1995. [5] Vapnik V. An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. [6] Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.[7] Cristianini N, Taylor J S. An Introduction to Support Vector Machines[M]. Cambridge, UK: Cambridge University Press, 2000.[8] 周金柱, 黄 进. 集成先验知识的多核线性规划支持向量回归[J]. 自动化学报, 2011, 37(3): 360-370.[9] Peng Xinjun. TSVR: An Efficient Twin Support Vector Machine for Regression[J]. Neural Networks, 2010, 23(3): 342-365.[10] Khemchandani R, Chandra S. Twin Support Vector Machines for Pattern Classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.[11] Khemchandani R, Chandra S. On Finite Newton Method for Support Vector Regression[J]. Neural Computing and Applications, 2010, 19(7): 967-977.[12] Mangasarian O L, Musicant D R. Lagrangian Support Vector Machine[J]. Journal of Machine Learning Research, 2001, 1: 161-177.[13] Balasundaram S K. On Lagrangian Support Vector Regression[J]. Expert Systems with Applications, 2010, 37(12): 8784-8793.[14] Mangasarian O L, Musicant D R. Finite Newton Method for Lagrangian Support Vector Machine[J]. Neuro- computing, 2003, 55(1-2): 39-55.[15] Gunn S R. SVM Matlab Toolbox[EB/OL]. (2010-11-21). http://www.isis.ecs.soton.ac.uk/resources/svminfo.[16] StatLib. Datasets Archive[EB/OL]. (2010-10-21). http://lib. stat.cmu.edu/datasets/.[17] LIACC. Regression DataSets[EB/OL]. (2010-08-21). http:// www.liaad.up.pt/~ltorgo/Regression/DataSets.html.[18] Blake C I, Merz C J. UCI Repository for Machine Learning Databases[EB/OL]. (2009-08-21). http://www.ics.uci. edu/_mlearn/MLRepository.html. |