计算机工程 ›› 2020, Vol. 46 ›› Issue (1): 309-314.doi: 10.19678/j.issn.1000-3428.0053116

• 开发研究与工程应用 • 上一篇    下一篇

基于混合向量模型的中文评论情感分析

陈曦1, 朱小栋1, 高广阔1, 肖芳雄2   

  1. 1. 上海理工大学 管理学院, 上海 200093;
    2. 金陵科技学院 软件工程学院, 南京 211169
  • 收稿日期:2018-11-11 修回日期:2019-03-14 出版日期:2020-01-15 发布日期:2019-03-20
  • 作者简介:陈曦(1994-),女,硕士研究生,主研方向为情感分析、数据挖掘;朱小栋(通信作者),副教授、博士;高广阔、肖芳雄,教授、博士。
  • 基金项目:
    国家社会科学基金"基于大数据关联分析的中国雾霾污染问题统计研究"(15BTJ017);上海高校智库内涵建设计划(战略研究)项目"基于云电子商务的上海市数字资源共享战略研究";安徽大学计算智能与信号处理教育部重点实验室开放课题"大数据挖掘服务平台的数据管理与算法管理理论研究"。

Sentiment Analysis of Chinese Comments Based on Hybrid Vector Model

CHEN Xi1, ZHU Xiaodong1, GAO Guangkuo1, XIAO Fangxiong2   

  1. 1. School of Business, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. School of Software Engineering, Jinling Institute of Technology, Nanjing 211169, China
  • Received:2018-11-11 Revised:2019-03-14 Online:2020-01-15 Published:2019-03-20

摘要: 为解决TF-IDF模型表达情感信息不足的问题,提出一种情感Senti模型,通过该模型提取文本中的情感信息,包括句子中积极/消极的情感词、否定词、转折词以及程度副词,考虑标点符号在句子中起到的情感作用,利用情感词典和语义规则提取情感信息,生成相应的情感矩阵。在此基础上,与TF-IDF模型进行拼接,形成混合向量模型。实验结果表明,与只运用TF-IDF模型相比,混合向量模型精确度更高,具有较好的分类效果。

关键词: 语义规则, TF-IDF模型, 混合向量化, 多层感知机, 汉语语料库

Abstract: In order to solve the problem of insufficient expression of sentiment information in the TF-IDF model,this paper proposes the Senti model to extract the sentiment information in the text,including positive/negative sentiment words,negative words,transition words and adverbs of degree in the sentences.The sentiment function of punctuations in the sentences is considered herein,and the sentiment dictionary and semantic rules are used to extract sentiment information,thus generating the corresponding sentiment matrix.On this basis,the proposed model is spliced with the TF-IDF model to form a hybrid vector model.Experimental results show that compared with the TF-IDF alone,the hybrid vector model shows higher accuracy and better classification effect.

Key words: semantic rules, TF-IDF model, hybrid vectorization, multi-layer perceptron, Chinese corpus

中图分类号: