«上一篇 下一篇»
  计算机工程  2020, Vol. 46 Issue (7): 312-320  DOI: 10.19678/j.issn.1000-3428.0055513
0

引用本文  

夏元天, 周菊香, 徐天伟. 含时变延迟且控制方向未知的自适应迭代学习[J]. 计算机工程, 2020, 46(7), 312-320. DOI: 10.19678/j.issn.1000-3428.0055513.
XIA Yuantian, ZHOU Juxiang, XU Tianwei. Adaptive Iterative Learning with Time-Varying Delay and Unknown Control Direction[J]. Computer Engineering, 2020, 46(7), 312-320. DOI: 10.19678/j.issn.1000-3428.0055513.

基金项目

国家自然科学基金(61862068)

通信作者

周菊香(通信作者), 助理研究员、博士

作者简介

夏元天(1990-), 男, 硕士研究生, 主研方向为智能控制、机器学习;
徐天伟, 教授、博士、博士生导师

文章历史

收稿日期:2019-07-18
修回日期:2019-09-10
含时变延迟且控制方向未知的自适应迭代学习
夏元天 , 周菊香 , 徐天伟     
云南师范大学 民族教育信息化教育部重点实验室, 昆明 650000
摘要:针对时变未知控制方向以及时变延迟对具有时变未知控制方向的非线性时变延迟系统造成的影响,提出一种自适应迭代学习的控制方法。利用局部Lipschitz连续条件,通过导入微分-差分耦合型参数更新定律,并结合Nussbaum增益技术以及信号替换和重组的技术思想,得到一种新的控制方案,并在理论上证明了跟踪误差的敛散性以及系统中各个信号的有界性。仿真实验验证了理论推导的正确性,同时说明了该系统在时效上的优越性和可行性。
关键词未知控制方向    非线性系统    时变延迟    自适应迭代学习    微分差分耦合型参数    Nussbaum增益技术    
Adaptive Iterative Learning with Time-Varying Delay and Unknown Control Direction
XIA Yuantian , ZHOU Juxiang , XU Tianwei     
Key Laboratory of Education Informatization for Nationalities Ministry of Education, Yunnan Normal University, Kunming 650000, China
Abstract: To address the influence of time-varying unknown control direction and time-varying delay on the nonlinear time-varying delay system with time-varying unknown control direction, this paper proposes a control method for adaptive iterative learning.The method uses the local Lipschitz continuity condition to introduce the differential and difference coupling parameters to update the law.Then based on the Nussbaum gain technique and the idea of signal replacement and recombination, a new control scheme is obtained.The convergence and divergence of the tracking error, and the boundedness of each signal in the system are theoretically proven.Simulation experiments demonstrate the correctness of the theoretical derivation, and show the excellent timeliness of the system.
Key words: unknown control direction    nonlinear system    time-varying delay    adaptive iterative learning    differential and difference coupling parameter    Nussbaum gain technique    
0 概述

自动化系统在建模和实际应用过程中存在不确定性和不精确性的问题, 使用传统的PID控制、最优控制等技术难以解决上述难题。迭代学习控制(Iterative Learning Control, ILC)[1-3]和重复控制(Repeat Control, RC)[4-5]很早被提出且得到了很好的发展。ILC作为一种克服传统控制设计局限性的有效控制技术[6-7], 其善于在有限的时间间隔内处理重复的控制任务。文献[1-3]提出一种新的ILC方法用来补偿基于收缩映射的ILC。文献[8]针对一类具有延迟性能的线性系统提出一种ILC协议。文献[9]提出一种基于PID-type的ILC算法。总的来说, ILC以其良好的全时间间隔轨迹跟踪性能已广泛用于各类控制领域。

受控系统的时延效应会降低系统性能, 甚至会导致系统瘫痪。文献[10]引入分离技术, 用以解决时延效应带来的影响。文献[11]为了解决一类不确定非仿射非线性时变时滞系统的自适应控制问题, 提出一种新的拉祖米钦-努斯鲍姆引理。文献[12]通过引入饱和函数, 构造出一种新的ILC机制。文献[13]针对不确定非线性时变时滞系统中存在的非仿射非线性故障问题, 提出一种基于模糊逼近的自适应容错跟踪控制方法。文献[14]利用神经逼近技术和努斯鲍姆函数法设计一种自适应ILC方案。文献[15]提出一种自适应迭代学习控制(AILC)方案, 用以解决一类具有未知时变延迟和输入饱和的非线性参数化系统。文献[16]针对一类具有未知时变参数和时变时滞的非线性系统, 通过参数分离技术并结合信号替换机制, 提出了一种新的AILC方法。

控制方向在系统的设计过程中起着关键性的作用。Nussbaum增益技术则是解决控制方向未知问题的一种常用方法[17-18]。文献[19]提出一种跟踪周期轨迹的连续通用重复学习控制方法。文献[20]将Nussbaum增益技术引入至Backstepping方法中, 以解决控制方向未知的船舶航向系统的稳态性能控制问题。文献[21]采用参数分离技术和信号置换思想来处理系统中出现的时滞项, 利用Nussbaum增益技术解决未知控制方向等问题。文献[22]提出一种数据驱动的约束范数最优迭代学习控制框架, 用以解决跟踪问题和点对点运动问题。文献[23]提出一种基于倒推和DSC相结合的自适应径向基函数神经网络控制方法。文献[24]通过变换系统形式和采用Butterworth低通滤波器解决控制方向未知的问题。文献[25]提出一种新的基于截断的调节方法, 使算法能够自适应地找到正确的控制方向。文献[26]提出一种基于障碍Lyapunov函数的反步自适应控制方法, 首次解决了控制方向未知的全状态约束非线性系统的跟踪控制问题。文献[27]在不使用努斯鲍姆增益的情况下, 提出一种求解离散系统未知控制方向问题的新方法。文献[28]提出一种鲁棒自适应迭代学习控制算法。

本文在上述研究的基础上进行改进, 设计一种新的自适应迭代学习策略。利用微分-差分耦合型参数自适应律解决了双线型参数中存在的时变和时不变类型的问题。使用局部的李普希茨连续条件, 使得非参数化得到了良好的处理。将Nussbaum技术与ILC方法相结合, 解决了系统中存在的控制方向未知问题。基于信号替换思想和参数重组技术, 将具有时延的所有项组合成新的时变参数, 使得时变延迟问题得到了解决。

1 问题描述

本文设计的自适应迭代学习策略可表示为:

$ \left\{ \begin{array}{l} {{\dot x}_i}(t) = \vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} g({x_i},t) + f({x_i}(t - \tau (t)),t)\\ {x_i} = v(t),t \in [ - {\tau _{{\rm{max}}}},0] \end{array} \right. $ (1)

其中, t∈[0, T], T>0且为已知常数, xi(t)∈R为系统状态, ui(t)∈R为控制输入, ϑ(t)∈R为随时间变化的连续型参数且未知, θR是与时间变化无关的连续型参数且未知, 并假设其大于零。ξ(xi, t)为非线性连续函数且已知, f(, )是未知连续函数, g(xi, t)为未知的非线性函数, 满足局部Lipschitz连续, τ(t)∈C[0, T]为未知时变延迟, 且满足τ(t)≤τmax, ∀t∈[0, T], τmax为已知常数, iZ+为迭代次数, v(t)给出了起始条件且为已知的连续型函数, b(t)≠0为时变参数且未知, 控制方向由其正负决定。

对于给定的期望轨迹xd(t)∈C[-τmax, T], ei=xi-xd是第k次迭代的追踪误差。控制目标是设计一组合适的控制输入ui序列, 当k趋于无穷时, 使系统的跟踪误差在L[0, T]2范数收敛于0, 假设如下:

假设1  τ(t)满足$\dot \tau $(t)≤η < 1, 则$ - \frac{{1 - \dot \tau \left( t \right)}}{{1 - \eta }} \le - 1$

假设2  f(, )满足李普希茨连续条件, 即:

$ \begin{array}{*{20}{l}} {|f({x_i}(t - \tau (t)),t) - f({x_d}(t - \tau (t)),t)| \le }\\ {l(|{x_i}(t - \tau (t)) - {x_d}(t - \tau (t))|)} \end{array} $

其中, l为未知的李普希茨常数。

假设3  xi(0)=xi-1(T), xd(0)=xd(T)。

假设4  系统1满足xi(t)=xd(t), t∈[-τmax, 0], 显然ei(t)=0, t∈[-τmax, 0], ∀iZ+

假设5  g(x, t)是未知非线性函数且满足李普希茨连续条件, 即:

$ \begin{array}{*{20}{l}} {|g(x,t) - g(\bar x,t)| \le \alpha (x,\bar x,t)|x - \bar x|}\\ {\forall t \in [0,T],\forall x,\bar x \in R} \end{array} $

其中, α(x, x, t)≥0为连续型函数, 有界且已知。

定义1  v(·)为Nussbaum函数, 且满足以下条件:

$ \left\{ {\begin{array}{*{20}{l}} {\mathop {{\rm{lim}}}\limits_{s \to \infty } {\rm{sup}}\frac{1}{s}\int_0^s v (k){\rm{d}}k = \infty }\\ {\mathop {{\rm{lim}}}\limits_{s \to \infty } {\rm{inf}}\frac{1}{s}\int_0^s v (k){\rm{d}}k = - \infty } \end{array}} \right. $ (2)

本文采用的Nussbaum函数为$v\left( k \right) = \cos \left( {\frac{{\rm{ \mathsf{ π} }}}{2}k} \right)\exp \left( {{k^2}} \right)$

引理1  v(·)和k(·)在[0, tf]上为光滑函数, ∀t∈[0, tf], V(t)≥0, b(t)在B=[b-, b+], 0∉B内取值。若式(3)成立:

$ V(t) \le C + \int_0^t {(b(} \sigma )v(k(\sigma )) + 1)\dot k(\sigma ){\rm{d}}\sigma ,\forall t \in [0,{t_f}] $ (3)

其中C为常量, 则V(t)、k(t)、$\int_0^t {\left( {b\left( \sigma \right)v\left( {k\left( \sigma \right)} \right) + 1} \right)} \dot k\left( \sigma \right){\rm{d}}\sigma $在[0, tf]上有界。

2 自适应迭代学习控制设计

下式为eik次迭代方程:

$ \begin{array}{*{20}{l}} {{{\dot e}_i} = {{\dot x}_i} - {{\dot x}_d} = \vartheta (t)\xi ({x_i},t)\theta + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} b(t){u_i}(t) + g({x_i},t) + f({x_d}(t - \tau (t)),t) - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\dot x}_d} + [f({x_i}(t - \tau (t)),t) - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} f({x_d}(t - \tau (t)),t)] = \vartheta (t)\xi ({x_i},t)\theta + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} b(t){u_i}(t) + g({x_i},t) + \varphi (t) + {\Lambda _i}} \end{array} $ (4)

其中, φ(t)=f(xi(t-τ(t)), t)-${\dot x_d}$, Λi=[f(xi(t-τ(t)), t)-f(xd(t-τ(t)), t)]。

由假设2可知, Λi满足以下条件:

$ \begin{array}{*{20}{l}} {|{\Lambda _i}| \le l(|{x_i}(t - \tau (t)) - {x_d}(t - \tau (t))|) \le }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} l(|{e_i}(t - \tau (t))|)} \end{array} $ (5)

针对系统1设计一个处理时变时延迟的李雅普诺夫函数, 具体如下所示:

$ {V_{1,i}}(t) = \frac{1}{2}e_i^2(t) + \frac{1}{{2(1 - \eta )}}\int_{t - \tau (t)}^t {e_i^2} (\sigma ){\rm{d}}\sigma $ (6)

由式(6)给出Lyapunov函数的导数如下所示:

$ \begin{array}{*{20}{c}} {{{\dot V}_{1,i}}(t) = {e_i}{{\dot e}_i}(t) + \frac{1}{{2(1 - \eta )}}[e_i^2(t) - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1 - \dot \tau (t))e_i^2(t - \tau (t))]} \end{array} $ (7)

将式(4)代入式(7)可得:

$ \begin{array}{*{20}{l}} {{{\dot V}_{1,i}}(t) = {e_i}[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_i},t) + \varphi (t)] + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {e_i}{\Lambda _i} + \frac{1}{{2(1 - \eta )}}[e_i^2(t) - (1 - \dot \tau (t))e_i^2(t - \tau (t))]} \end{array} $ (8)

由式(5)可得:

$ {e_i}{\Lambda _i} \le |{e_i}|{\kern 1pt} {\kern 1pt} {\kern 1pt} |{\Lambda _i}| \le l|{e_i}|{\kern 1pt} {\kern 1pt} {\kern 1pt} \left| {{e_i}(t - \tau (t))} \right| $ (9)

由式(9)使用杨氏不等式$\bar x\;\bar y \le \frac{1}{2}{\bar x^2} + \frac{1}{2}{\bar y^2}$, $\forall \left( {\bar x, \bar y} \right) \in R$得到:

$ {e_i}{\Lambda _i} \le l|{e_i}|{\kern 1pt} {\kern 1pt} {\kern 1pt} |{e_i}(t - \tau (t))| \le \frac{{{l^2}}}{2}e_i^2 + \frac{1}{2}e_i^2(t - \tau (t)) $ (10)

将式(10)代入式(8)可得:

$ \begin{array}{*{20}{l}} {{{\dot V}_{1,i}} \le {e_i}[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_i},t) + \varphi (t)] + }\\ {\frac{{{l^2}}}{2}e_i^2 + \frac{1}{2}e_i^2(t - \tau (t)) + \frac{1}{{2(1 - \eta )}}[e_i^2(t) - }\\ {(1 - \dot \tau (t))e_i^2(t - \tau (t))] \le }\\ {{e_i}[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_i},t) + \varphi (t)] + \frac{{{l^2}}}{2}e_i^2 + }\\ {\frac{1}{{2(1 - \eta )}}e_i^2 + (\frac{1}{2} - \frac{{1 - \dot \tau (t)}}{{2(1 - \eta )}}e_i^2(t - \tau (t)))} \end{array} $

由假设1得到$\frac{1}{2} - \frac{{1 - \dot \tau \left( t \right)}}{{2\left( {1 - \eta } \right)}} \le 0$, 可知:

$ \begin{array}{*{20}{l}} {{{\dot V}_{1,i}} \le {e_i}[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_i},t) + \varphi (t)] + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{{l^2}}}{2}e_i^2 + \frac{1}{{2(1 - \eta )}}e_i^2} \end{array} $

$L = \frac{{{l^2}}}{2}$可得:

$ \begin{array}{*{20}{l}} {{{\dot V}_{1,i}} \le {e_i}[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_i},t) + }\\ {\varphi (t) + L{e_i} + \frac{1}{{2(1 - \eta )}}{e_i}] \le }\\ {{e_i}[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_i},t) - }\\ {g({x_d},t) + g({x_d},t) + \varphi (t) + L{e_i} + \frac{1}{{2(1 - \eta )}}{e_i}] \le }\\ {{e_i}[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_d},t) + \varphi (t) + }\\ {L{e_i} + \frac{1}{{2(1 - \eta )}}{e_i}] + {e_i}[g({x_i},t) - g({x_d},t)]} \end{array} $ (11)

由假设5得到:

$ \begin{array}{*{20}{l}} {{e_i}(t)[g({x_i},t) - g({x_d},t)] \le |{e_i}(t)[g({x_i},t) - g({x_d},t)] = }\\ {|{e_i}(t)|{\kern 1pt} {\kern 1pt} {\kern 1pt} |g({x_i},t) - g({x_d},t)| \le }\\ {|{e_i}(t)|\alpha ({x_i},{x_d},t)|{x_i} - {x_d}| \le }\\ {|{e_i}(t)|\alpha ({x_i},{x_d},t)|{e_i}(t)| = \alpha ({x_i},{x_d},t)e_i^2(t)} \end{array} $ (12)

将式(12)代入式(11)中, 得到:

$ \begin{array}{*{20}{l}} {{{\dot V}_{1,i}}(t) = {e_i}(t)[\vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_d},t) + }\\ {\varphi (t) + L{e_i}(t) + \frac{1}{{2(1 - \eta )}}{e_i}(t) + \alpha ({x_i},{x_d},t){e_i}(t)]} \end{array} $ (13)

i次迭代的控制律为:

$ \left\{ {\begin{array}{*{20}{l}} {{u_i}(t) = v({k_i}(t)){z_i}(t)}\\ {{{\dot k}_i}(t) = {z_i}(t){e_i}(t),{k_i}(0) = {k_{i - 1}}(T),{k_0}(0) = 0}\\ {{z_i}(t) = c{e_i}(t) + {{\hat \vartheta }_i}(t)\xi ({x_i},t){{\hat \theta }_i}(t) + g({x_d},t) + }\\ {\varphi (t) + {{\hat L}_i}(t){e_i} + \frac{1}{{2(1 - \eta )}}{e_i} + \alpha ({x_i},{x_d},t){e_i}(t)} \end{array}} \right. $ (14)

其中, ${\hat \vartheta _i}\left( t \right)$${\hat \theta _i}\left( t \right)$${\hat L_i}\left( t \right)$分别为ϑ(t)、θL的估算值, c>0且已知。

ϑ(t)的学习律为:

$ {\hat \vartheta _i}(t) = \left\{ {\begin{array}{*{20}{l}} {0,i = - 1}\\ {{q_0}(t)\xi ({x_i},t){e_i}(t),i = 0}\\ {{\rm{proj}} ({\vartheta _{i - 1}}(t)) + {q_1}\xi ({x_i},t){e_i}(t),i > 0} \end{array}} \right. $ (15)

θ的学习律为:

$ {{\hat{\theta }}_{i}}(t)={{q}_{2}}\xi ({{x}_{i}},t){{\hat{\vartheta }}_{i}}(t){{e}_{i}}(t),{{\dot{\hat{\theta }}}_{-1}}(t)=0 $ (16)

L的学习律为:

$ {\hat L_i}(t) = {q_3}e_i^2(t),{\hat L_{ - 1}}(t) = 0 $ (17)

其中, i为迭代次数, q1>0, q2>0, q3>0均为常数增益, 要求${\hat \theta _i}$(0)=${\hat \theta _{i - 1}}$(T), ${\hat L_i}$(0)=${\hat L_{i - 1}}$(T), q0(t)=$\frac{t}{T}{q_1}$, t∈[0, T], 则q0(t)在区间[0, T]上是严格单调增加的连续函数, 满足q0(0)=0, q0(T)=q1。投影函数proj(·)定义为:

$ {\rm{proj}} ( \cdot ) = \left\{ {\begin{array}{*{20}{l}} { \cdot | \cdot | \le {\vartheta ^*}}\\ {{\rm{sgn}} ( \cdot )| \cdot | \ge {\vartheta ^*}} \end{array}} \right. $ (18)

其中, ϑ*为投影边界, 满足${\vartheta ^*} \ge \mathop {\sup }\limits_{t \in \left[ {0, T} \right]} \left| {\vartheta \left( t \right)} \right|$

性质1  ${\hat \theta _i}$(0)=${\hat \theta _{i - 1}}$(T), ${\hat L_i}$(0)=${\hat L_{i - 1}}$(T), ${\dot k_i}$(0)=${\dot k_{i - 1}}$(T)。

证明  当i=0时, 由式(15)可得$\hat \vartheta $0(0)=$\hat \vartheta $-1(T)=0。假设$\hat \vartheta $j(0)=$\hat \vartheta $j-1(T), (j=1, 2, …, i-1), 由式(15)可得:

$ \begin{array}{*{20}{l}} {{{\hat \vartheta }_{j + 1}}(0) = {\rm{proj }}({{\hat \vartheta }_j}(0)) + {q_1}\xi ({x_{j + 1}},0){e_{j + 1}}(0)}\\ {{{\hat \vartheta }_j}(T) = {\rm{proj }} ({{\hat \vartheta }_{j - 1}}(T)) + {q_1}\xi ({x_j},T){e_j}(T)} \end{array} $ (19)

根据假设3和式(18), 得到$\hat \vartheta $j+1(0)=$\hat \vartheta $j(T), 即得到$\hat \vartheta $i(0)=$\hat \vartheta $i-1(T), 再根据ei(0)=ei-1(T), xi(0)=xi-1(T)得到${\hat \theta _i}$(0)=${\hat \theta _{i - 1}}$(T), ${\hat L_i}$(0)=${\hat L_{i - 1}}$(T)。

由式(14)很容易看出${\dot k_i}$(0)=${\dot k_{i - 1}}$(T), 因为ei(0)=ei-1(T), xi(0)=xi-1(T), ${\hat \vartheta _i}$(0)=${\hat \vartheta _{i - 1}}$(T), ${\hat \theta _i}$(0)=${\hat \theta _{i - 1}}$(T), xd(0)=xd(T)。

性质2  ${\left( {\vartheta \left( t \right) - {{\hat \vartheta }_i}\left( t \right)} \right)^2} \ge {\left( {\vartheta \left( t \right) - {\rm{proj}}\left( {{{\hat \vartheta }_i}\left( t \right)} \right)} \right)^2}$, 其中i为迭代次数。

证明  若不等式${\left( {\vartheta \left( {\rm{t}} \right) - {{\hat \vartheta }_i}\left( t \right)} \right)^2} \ge {\left( {\vartheta \left( t \right) - {\rm{proj}}\left( {{{\hat \vartheta }_i}\left( t \right)} \right)} \right)^2}$成立, 即证:

$ \begin{array}{*{20}{l}} {{{(\vartheta (t) - {{\hat \vartheta }_i}(t))}^2} \ge {{(\vartheta (t) - {\rm{proj }} ({\vartheta _i}(t)))}^2} = }\\ {({{\hat \vartheta }_i}(t) - {\rm{proj}}({{\hat \vartheta }_i}(t)))({{\hat \vartheta }_i}(t) + }\\ {{\rm{proj }}({{\hat \vartheta }_i}(t)) - 2\vartheta (t)) \ge 0} \end{array} $ (20)

$\left| {{{\hat \vartheta }_i}\left( t \right)} \right| \le {\vartheta ^*}$, proj(${{\hat \vartheta }_i}$(t))=${{\hat \vartheta }_i}$(t), 则式(20)等于0, 即成立。

${{\hat \vartheta }_i}\left( t \right) > {\vartheta ^*}, {\rm{proj}}\left( {{{\hat \vartheta }_i}\left( t \right)} \right) = {\vartheta ^*}, {{\hat \vartheta }_i}\left( t \right) - {\rm{pro\hat j}}\left( {{\vartheta _i}\left( t \right)} \right) \ge 0, {{\hat \vartheta }_i}\left( t \right) + {\rm{proj}}\left( {{{\hat \vartheta }_i}\left( t \right)} \right) - 2\vartheta \left( t \right) \ge 0$, 则式(20)成立。

${{\hat \vartheta }_i}\left( t \right) > - {\vartheta ^*}, {\rm{proj}}\left( {{{\hat \vartheta }_i}\left( t \right)} \right) = - {\vartheta ^*}, {{\hat \vartheta }_i}\left( t \right) - {\rm{pro\hat j}}\left( {{\vartheta _i}\left( t \right)} \right) \le 0, {{\hat \vartheta }_i}\left( t \right) + {\rm{proj}}\left( {{{\hat \vartheta }_i}\left( t \right)} \right) - 2\vartheta \left( t \right) \le 0$, 可得式(20)成立。

3 收敛性分析

定理1  系统(1)在假设1~假设5、学习控制律式(14)以及参数学习律式(15)~式(17)下, 保证了:

1) 跟踪误差ei渐进收敛于0, 即$\mathop {\lim }\limits_{i \to \infty } \left| {{e_i}} \right| = 0$;

2) 闭环系统所有信号有界。

证明  构造的Lyapunov泛函为:

$ \begin{array}{*{20}{l}} {{V_i}(t) = {V_{1,i}}(t) + \frac{\theta }{{2{q_1}}}\int_0^t {\tilde \vartheta _i^2} (\sigma ){\rm{d}}\sigma + }\\ {\frac{\theta }{{2{q_1}}}\int_t^T {\tilde \theta _{i - 1}^2} (\sigma ){\rm{d}}\sigma + \frac{1}{{{2_3}}}\tilde \theta _i^2(t) + \frac{1}{{2{q_3}}}\tilde L_i^2(t)} \end{array} $ (21)

对任意t∈[0, T], V(t)在区间[0, T]上的差分为:

$ \begin{array}{l} \begin{array}{*{20}{l}} {\Delta V(t) = ({V_{1,i}}(t) - {V_{1,i - 1}}(t)) + }\\ {\frac{\theta }{{2{q_1}}}\int_0^t {(\tilde \vartheta _i^2(} \sigma ) - \tilde \vartheta _{i - 1}^2(\sigma )){\rm{d}}\sigma + } \end{array}\\ \begin{array}{*{20}{l}} {\frac{\theta }{{2{q_2}}}\int_t^T {(\tilde \vartheta _{i - 1}^2(} \sigma ) - \tilde \vartheta _{i - 2}^2(\sigma )){\rm{d}}\sigma + }\\ {\frac{1}{{2{q_2}}}(\tilde \theta _i^2(t) - \tilde \theta _{i - 1}^2(t)) + }\\ {\frac{1}{{2{q_3}}}(\tilde L_i^2(t) - \tilde L_{i - 1}^2(t))} \end{array} \end{array} $ (22)

其中, $\tilde \vartheta = \vartheta \left( t \right) - {{\hat \vartheta }_i}\left( t \right), {{\tilde \theta }_i}\left( t \right) = \theta - {{\hat \theta }_i}\left( t \right), {{\tilde L}_i}\left( t \right) = L - {{\hat L}_i}\left( t \right)$

根据式(4)和式(14)计算式(22)右边第1项可得:

$ \begin{array}{l} \begin{array}{*{20}{l}} {{V_{1,i}}(t) - {V_{1,i - 1}}(t) = \int_0^t {{{\dot V}_{1,i}}} (\sigma ){\rm{d}}\sigma + {V_{1,i}}(0) - {V_{1,i - 1}}(t) = }\\ {\int_0^t {{e_i}} [\vartheta (\sigma )\xi ({x_i},t)\theta + b(t){u_i}(t) + }\\ {g({x_d},t) + \varphi (t) + L{e_i} + \frac{1}{{2(1 - \eta )}}{e_i} + }\\ {\alpha ({x_i},{x_d},t){e_i}(t)]{\rm{d}}\sigma + {V_{1,i}}(0) - {V_{1,i - 1}}(t) = } \end{array}\\ \int_0^t {{e_i}} [\vartheta (\sigma )\xi ({x_i},t)\theta + b(t)v({k_i}){z_i} + {z_i} - \\ \begin{array}{*{20}{l}} {c{e_i}(t) - {{\hat \vartheta }_i}(t)\xi ({x_i},t){{\hat \theta }_i}(t) - {{\hat L}_i}{e_i} - }\\ {\frac{1}{{2(1 - \eta )}}{e_i} + L{e_i} + \frac{1}{{2(1 - \eta )}}{e_i}]{\rm{d}}\sigma + }\\ {{V_{1,i}}(0) - {V_{1,i - 1}}(t) = \int_0^t {{{\tilde \vartheta }_i}} (\sigma )\xi ({x_i},\sigma )\theta {e_i}(\sigma ){\rm{d}}\sigma + } \end{array}\\ \int_0^t {{{\hat \vartheta }_i}} (\sigma )\xi ({x_i},\sigma ){{\tilde \theta }_i}(\sigma ){e_i}(\sigma ){\rm{d}}\sigma + \int_0^t {e_i^2} (\sigma ){{\tilde L}_i}(\sigma ){\rm{d}}\sigma + \\ \mathop \smallint \nolimits_0^t [b(\sigma )v({k_i}(\sigma )) + 1]{k_i}{\rm{d}}\sigma - \int_0^t c e_i^2(\sigma ){\rm{d}}\sigma + \\ {V_{1,i}}(0) - {V_{1,i - 1}}(t) \end{array} $ (23)

根据参数学习律式(15), 再结合性质2以及关系式(a-b)2-(a-c)2=(c-b)(2(a-b)+(b-c)), 计算式(22)右边第2项可得:

$ \begin{array}{*{20}{l}} {\frac{\theta }{{2{q_1}}}\int_0^t {(\tilde \vartheta _i^2(} \sigma ) - \tilde \vartheta _{i - 1}^2(\sigma )){\rm{d}}\sigma = \frac{\theta }{{2{q_1}}}\int_0^t {((} \vartheta (\sigma ) - {{\hat \vartheta }_i}(\sigma ){)^2} - }\\ {{{(\vartheta (\sigma ) - {{\hat \vartheta }_{i - 1}}(\sigma ))}^2}){\rm{d}}\sigma \le \frac{\theta }{{2{q_1}}}\int_0^t {((} \vartheta (\sigma ) - {{\hat \vartheta }_i}(\sigma ){)^2} - (\vartheta (\sigma ) - }\\ {{\rm{proj }}({{\hat \vartheta }_{i - 1}}(\sigma )){)^2}){\rm{d}}\sigma = - \int_0^t {{{\tilde \vartheta }_i}} (\sigma )\xi ({x_i},\sigma )\theta {e_i}(\sigma ){\rm{d}}\sigma - }\\ {\frac{1}{2}\int_0^t {{q_1}} \theta {{(\xi ({x_i},\sigma ){e_i}(\sigma ))}^2}{\rm{d}}\sigma } \end{array} $ (24)

根据参数学习律式(16), 计算式(22)右边第4项可得:

$ \begin{array}{*{35}{l}} \frac{1}{2{{q}_{2}}}(\theta V_{i}^{2}(t)-\tilde{\theta }_{i-1}^{2}(t))= \\ \frac{1}{{{q}_{2}}}\int_{0}^{t}{{{{\tilde{\theta }}}_{i}}}(\sigma ){{{\tilde{\theta }}}_{i}}(\sigma )\text{d}\sigma +\frac{1}{2{{q}_{2}}}(\tilde{\theta }_{i}^{2}(0)-\tilde{\theta }_{i-1}^{2}(t))= \\ -\frac{1}{{{q}_{2}}}\int_{0}^{t}{{{{\tilde{\theta }}}_{i}}}(\sigma )\dot{\hat{\theta }}(\sigma )\text{d}\sigma +\frac{1}{2{{q}_{2}}}(\tilde{\theta }_{i}^{2}(0)-\tilde{\theta }_{i-1}^{2}(t))= \\ -\int_{0}^{t}{{{{\hat{\vartheta }}}_{i}}}(\sigma )\xi ({{x}_{i}},\sigma ){{{\tilde{\theta }}}_{i}}(\sigma ){{e}_{i}}(\sigma )\text{d}\sigma +\frac{1}{2{{q}_{2}}}(\tilde{\theta }_{i}^{2}(0)-\theta _{i-1}^{2}(t)) \\ \end{array} $ (25)

根据式(17), 计算式(22)右边第5项可得:

$ \begin{array}{*{20}{l}} {\frac{1}{{2{q_3}}}(\tilde L_i^2(t) - \tilde L_{i - 1}^2(t)) = }\\ {\frac{1}{{{q_3}}}\int_0^t {{{\tilde L}_i}} (\sigma ){{\hat L}_i}(\sigma ){\rm{d}}\sigma + \frac{1}{{2{q_3}}}(\tilde L_i^2(0) - \tilde L_{i - 1}^2(t)) = }\\ { - \frac{1}{{{q_3}}}\int_0^t {{{\tilde L}_i}} (\sigma ){{\hat L}_i}(\sigma ){\rm{d}}\sigma + \frac{1}{{2{q_3}}}(\tilde L_i^2(0) - \tilde L_{i - 1}^2(t)) = }\\ { - \int_0^t {{{\tilde L}_i}} (\sigma )e_i^2(\sigma ){\rm{d}}\sigma + \frac{1}{{2{q_3}}}(\tilde L_i^2(0) - \tilde L_{i - 1}^2(t))} \end{array} $ (26)

将式(23)~式(26)分别代入式(22)可得:

$ \begin{array}{l} \Delta {V_i}(t) \le \int_0^t {{{\tilde \vartheta }_i}} (\sigma )\xi ({x_i},\sigma ){e_i}(\sigma ){\rm{d}}\sigma +\\ \int_0^t {{{\hat \vartheta }_i}} (\sigma )\xi ({x_i},\sigma ){{\tilde \theta }_i}(\sigma ){e_i}(\sigma ){\rm{d}}\sigma +\\ \int_0^t {e_i^2} (\sigma ){{\tilde L}_i}(\sigma ){\rm{d}}\sigma - \int_0^t c e_i^2(\sigma ){\rm{d}}\sigma + \\ \mathop \smallint \nolimits_0^t [b(\sigma )v({k_i}) + 1]{{\dot k}_i}{\rm{d}}\sigma +\\ {V_{1,i}}(0) - {V_{1,i - 1}}(t) - \int_0^t {{{\tilde \vartheta }_i}} (\sigma )\xi ({x_i},\sigma ){e_i}(\sigma ){\rm{d}}\sigma - \frac{1}{2}\int_0^t {{q_1}} \theta {(\xi ({x_i},\sigma ){e_i}(\sigma ))^2}{\rm{d}}\sigma +\\ \frac{\theta }{{2{q_1}}}\\ \int_t^T {(\tilde \vartheta _{i - 1}^2(} \sigma ) - \tilde \vartheta _{i - 2}^2(\sigma )){\rm{d}}\sigma - \int_0^t {{{\hat \vartheta }_i}} (\sigma )\xi ({x_i},\sigma ){{\tilde \theta }_i}(\sigma ){e_i}(\sigma ){\rm{d}}\sigma +\\ \frac{1}{{2{q_2}}}(\tilde \theta _i^2(0) - \tilde \theta _i^2(0) - \tilde \theta _{i - 1}^2(t)) - \int_0^t {{{\tilde L}_i}} (\sigma )e_i^2(\sigma ){\rm{d}}\sigma + \\ \frac{1}{{2{q_3}}}(\tilde L_i^2(0) - \tilde L_{i - 1}^2(t)) = \mathop \smallint \nolimits_0^t [b(\sigma )v({k_i}) + 1]{{\dot k}_i}{\rm{d}}\sigma - \int_0^t {ce_i^2} (\sigma ){\rm{d}}\sigma +\\ {V_{1,i}}(0) - {V_{1,i - 1}}(t) - \frac{1}{2}\int_0^t {{q_1}} \theta {(\xi ({x_i},\sigma ){e_i}(\sigma ))^2}{\rm{d}}\sigma + \\ \frac{\theta }{{2{q_1}}}\mathop \smallint \nolimits_t^T (\tilde \vartheta _{i - 1}^2(\sigma ) - \tilde \vartheta _{i - 2}^2(\sigma )){\rm{d}}\sigma + \frac{1}{{2{q_2}}}(\tilde \theta _i^2(0) - \tilde \theta _{i - 1}^2(t)) +\\ \frac{1}{{2{q_3}}}(\tilde L_i^2(0) - \tilde L_{i - 1}^2(t)) \le \mathop \smallint \nolimits_0^t [b(\sigma )v({k_i}) + 1]{{\dot k}_i}{\rm{d}}\sigma - \\ \int_0^t c e_i^2(\sigma ){\rm{d}}\sigma + \frac{1}{2}e_i^2(0) + \frac{1}{{2(1 - \eta )}}\int_{ - \tau (0)}^0 {e_i^2} (\sigma ){\rm{d}}\sigma +\\ \frac{1}{2}e_{i - 1}^2(t) + \frac{1}{{2(1 - \eta )}}\int_{ - x(0)}^0 {e_{i - 1}^2} (\sigma ){\rm{d}}\sigma + \frac{\theta }{{2{q_1}}}\\ \int_t^T {(\tilde \vartheta _{i - 1}^2(} \sigma ) - \tilde \vartheta _{i - 2}^2(\sigma )){\rm{d}}\sigma + \frac{1}{{2{q_2}}}(\tilde \theta _i^2(0) - \tilde \theta _{i - 1}^2(t)) + \frac{1}{{2{q_3}}}(\tilde L_i^2(0) - \tilde L_{i - 1}^2(t)) \end{array} $ (27)

t=T, 根据假设3可得ei(0)=ei-1(T), 由${{\hat \theta }_i}$(0)=${{\hat \theta }_i}$(T), 得到$\tilde \theta _i^2$(0)=$\tilde \theta _{i - 1}^2$(T), 由${{\hat L}_i}$(0)=${{\hat L}_{i - 1}}$(T), 得到$\tilde L_i^2$(0)=$\tilde L_{i - 1}^2$(T), 再根据假设4得到ei(t)=0, t∈[-τmax, 0], 因此Lyapunov函数Vi(t)的差分可表示为:

$ \Delta {V_i}(T) \le \mathop \smallint \nolimits_0^T [b(\sigma )v({k_i}) + 1]{k_i}{\rm{d}}\sigma - \int_0^T c e_i^2(\sigma ){\rm{d}}\sigma $ (28)

重复利用式(28)可以得到:

$ \begin{array}{l} {V_i}(T) \le {V_0}(T) - \sum\limits_{j = 1}^i {\mathop \smallint \nolimits_0^T } ce_j^2(\sigma ){\rm{d}}\sigma + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{j = 1}^i {\mathop \smallint \nolimits_0^T } [b(\sigma )v({k_i}) + 1]{{\dot k}_i}{\rm{d}}\sigma \end{array} $ (29)

由于引理1是定义在时间域上, 不能直接使用。为了将V(t)扩展到时间域上, 重新定义了新的函数${\dot k}$(t+(i-1)T)=${{\dot k}_i}$(t), k(t+(i-1)T)=ki(t), ∀t∈[0, T]。根据性质1和式(16)可知∀t∈[0, iT], ${\dot k}$(t)是一个连续型函数, k(t)是一个连续的光滑函数。因此:

$ \begin{array}{l} \begin{array}{*{20}{l}} {\sum\limits_{j = 1}^i {\int_0^T {(b(} } \sigma )v({k_j}) + 1){{\dot k}_j} = }\\ {\int_0^T {(b(} \sigma )v({k_1}) + 1){{\dot k}_1}{\rm{d}}\sigma + \int_0^T {(b(} \sigma )v({k_2}) + 1)} \end{array}\\ \begin{array}{*{20}{l}} {{{\dot k}_2}{\rm{d}}\sigma + \cdots + \int_0^T {(b(} \sigma )v({k_i}) + 1){{\dot k}_i}{\rm{d}}\sigma = }\\ {\int_0^T {(b(} \sigma )v({k_1}) + 1){{\dot k}_1}{\rm{d}}\sigma + \int_T^{2T} {(b(} \sigma )v(k) + 1)} \end{array}\\ \begin{array}{*{20}{l}} {\dot k{\rm{d}}\sigma + \cdots + \int_{(i - 1)T}^{iT} {(b(} \sigma )v(k) + 1)\dot k{\rm{d}}\sigma = }\\ {\int_0^{iT} {(b(} \sigma )v(k) + 1)\dot k{\rm{d}}\sigma } \end{array} \end{array} $ (30)

进一步得到Vi(t)的倒数为:

$ \begin{array}{l} \begin{array}{*{20}{l}} {{{\dot V}_i}(t) = {{\dot V}_{1,i}}(t) + \frac{\theta }{{2{q_1}}}(\tilde \vartheta _i^2(t) - \tilde \vartheta _{i - 1}^2(t)) + }\\ {\frac{1}{{{q_2}}}{{\tilde \theta }_i}(t){{\tilde \theta }_i}(t) + \frac{1}{{{q_3}}}{{\tilde L}_i}(t){{\tilde L}_i}(t) \le } \end{array}\\ \begin{array}{*{20}{l}} {{{\tilde \vartheta }_i}(t)\xi ({x_i},t)\theta {e_i}(t) + {{\hat \vartheta }_i}(t)\xi ({x_i},t){{\tilde \theta }_i}(t){e_i}(t) + }\\ {e_i^2(t){{\tilde L}_i}(t) + (b(t)v({k_i}) + 1){k_i} - ce_i^2 - }\\ {{{\tilde \vartheta }_i}(t)\xi ({x_i},t)\theta {e_i}(t) - \frac{1}{2}{q_1}\theta {{(\xi ({x_i},t){e_i}(t))}^2} - } \end{array}\\ \begin{array}{*{20}{l}} {{{\hat \vartheta }_i}(t)\xi ({x_i},t){{\tilde \theta }_i}(t){e_i}(t) - e_i^2(t){{\tilde L}_i}(t) = }\\ { - ce_i^2 + (b(t)v({k_i}) + 1){{\dot k}_i}} \end{array} \end{array} $ (31)

表示E(t+(i-1)T)=Vi(t)。对∀t∈[0, T], 由式(29)~式(31)可得:

$ \begin{array}{*{20}{l}} {E(iT + t) \le {V_0}(T) - \sum\limits_{j = 1}^{i + 1} {\int_0^T c } e_j^2(\sigma ){\rm{d}}\sigma + }\\ {\int_0^{iT + 1} {(b(} \sigma )v(k) + 1)\dot k{\rm{d}}\sigma } \end{array} $ (32)

i→∞, 可以得到:

$ \begin{array}{*{20}{l}} {\mathop {{\rm{lim}}}\limits_{i \to \infty } E(iT + t) \le {V_0}(T) - \mathop {{\rm{lim}}}\limits_{i \to \infty } \sum\limits_{j = 1}^{i + 1} {\int_0^T c } e_j^2(\sigma ){\rm{d}}\sigma + }\\ {\mathop {{\rm{lim}}}\limits_{i \to \infty } \int_0^{iT} {(b(} \sigma )v(k) + 1)\dot k{\rm{d}}\sigma } \end{array} $ (33)

下面证明V0(T)的有界性。

对任意∀t∈[0, T], V0(t)的倒数为:

$ {\dot V_0}(t) \le (b(t)v({k_0}) + 1){\dot k_0} - ce_0^2 \le (b(t)v({k_0}) + 1){\dot k_0} $ (34)

对式(34)两端从0到T进行积分可得:

$ {V_0}(T) \le {V_0}(0) + \int_0^T {(b(} \sigma )v({k_0}) + 1){\dot k_0}{\rm{d}}\sigma $ (35)

因为∀t∈[0, T], 根据式(15)可知${\hat \vartheta }$-1(t)=0, 由式(16)、式(17)可知${\hat \theta }$-1(t)=0, ${\hat L}$-1(t)=0, 并且${\hat \theta }$i(0)=${\hat \theta }$i-1(T), ${\hat L}$i(0)=${\hat L}$i-1(T), 可得${\hat \theta }$0(0)=${\hat \theta }$-1(T), ${\hat L}$0(0)=${\hat L}$-1(T), 再根据假设4计算V0(0)为:

$ \begin{array}{l} \begin{array}{*{20}{l}} {{V_0}(0) = \frac{1}{2}e_i^2(0) + \frac{1}{{2(1 - \eta )}}\int_{ - \tau (t)}^0 {e_0^2} (\sigma ){\rm{d}}\sigma + }\\ {\frac{\theta }{{2{q_1}}}\int_0^T {\tilde \vartheta _{ - 1}^2} (\vartheta ){\rm{d}}\sigma + \frac{1}{{2{q_2}}}\theta _0^2(0) + \frac{1}{{2{q_3}}}\tilde L_0^2(0) = } \end{array}\\ \begin{array}{*{20}{l}} {\frac{1}{2}e_i^2(0) + \frac{\theta }{{2{q_1}}}\int_0^T {(\vartheta (} \sigma ) - {{\hat \vartheta }_{ - 1}}(\sigma ){)^2}{\rm{d}}\sigma + }\\ {\frac{1}{{2{q_2}}}{{(\theta - {{\tilde \theta }_0}(0))}^2} + \frac{1}{{2{q_3}}}{{(L - {{\tilde L}_0}(0))}^2} = }\\ {\frac{1}{2}e_i^2(0) + \frac{\theta }{{2{q_1}}}\int_0^T {{\vartheta ^2}} (\sigma ){\rm{d}}\sigma + \frac{1}{{2{q_2}}}{\theta ^2} + \frac{1}{{2{q_3}}}{L^2}} \end{array} \end{array} $ (36)

ϑ(t)在[0, T]上是连续型函数, 因此ϑ(t)在[0, T]上为有界函数, 综合已知条件得, 存在M1, M2, M3, M4使下式成立:

$ \begin{array}{*{20}{l}} {{M_1} = \frac{1}{2}e_0^2(0),{M_2} = \frac{\theta }{{2{q_2}}}\int_0^T {{\vartheta ^2}} (\sigma ){\rm{d}}\sigma ,}\\ {{M_3} = \frac{1}{{2{q_2}}}{\theta ^2},{M_4} = \frac{1}{{2{q_3}}}{L^2}} \end{array} $ (37)

将式(37)代入式(36)可得:

$ {V_0}(0) = {M_1} + {M_2} + {M_3} + {M_4} < \infty $ (38)

因此V0(0)有界。因为V0(T)>0, 由式(35)以及引理1可知$\int_0^T {\left( {b\left( \mathit{\boldsymbol{\sigma }} \right)v\left( {{k_0}} \right) + 1} \right)} {{\dot k}_0}{\rm{d}}\mathit{\boldsymbol{\sigma }}$有界, 则V0(T)有界。因为V0(T)有界, E(iT+t)>0, 由式(33)以及引理1可知$\int_0^{iT + t} {\left( {b\left( \mathit{\boldsymbol{\sigma }} \right)v\left( {k\left( \mathit{\boldsymbol{\sigma }} \right)} \right) + 1} \right)} \dot k\left( \mathit{\boldsymbol{\sigma }} \right){\rm{d}}\mathit{\boldsymbol{\sigma }}$有界, 可以得出$\mathop {\lim }\limits_{i \to \infty } \int_0^T {e_i^2} \left( \mathit{\boldsymbol{\sigma }} \right){\rm{d}}\mathit{\boldsymbol{\sigma }} \to 0$。根据Barbalat引理, 可以得到$\mathop {\lim }\limits_{i \to \infty } \left| {{e_i}\left( t \right)} \right| = 0$

V0(T)有界, Ei(t)>0, 可以得出Ei(t)有界; 由Ei(t)有界, 又可以得出${{\tilde \vartheta }_i}$(t), ${{\tilde \theta }_i}$(t), ${{\tilde L}_i}$(t), ei(t)有界; 因为${{\tilde \vartheta }_i}\left( t \right) = \vartheta \left( t \right) - {{\hat \vartheta }_i}\left( t \right), {{\tilde \theta }_i}\left( t \right) = \theta - {{\hat \theta }_i}\left( t \right), {{\tilde L}_i}\left( t \right) = L - {{\hat L}_i}\left( t \right), {e_i}\left( t \right) = {x_i} - {x_d}$, 又可以得到${{\tilde \vartheta }_i}\left( t \right), {{\hat \theta }_i}\left( t \right), {{\hat L}_i}\left( t \right), {x_i}\left( t \right)$有界; 将${{\hat \vartheta }_i}\left( t \right), {{\hat \theta }_i}\left( t \right), {{\hat L}_i}\left( t \right), {x_i}\left( t \right)$代入ui(t), 得到ui(t)有界, 因此整个系统中的所有信号均有界。

证明结束。

4 实例仿真

不确定系统:

$ \left\{ {\begin{array}{*{20}{l}} {{{\dot x}_i}(t) = \vartheta (t)\xi ({x_i},t)\theta + b(t){u_i}(t) + g({x_i},t) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} f({x_i}(t - \tau (t)),t)}\\ {{x_i} = 0,t \in [ - {\tau _{{\rm{max}}}},0]} \end{array}} \right. $

目标轨线:

$ {x_d}(t) = {\rm{cos}}{\kern 1pt} {\kern 1pt} {\kern 1pt} t $

其中, $\vartheta \left( t \right) = 0.9 + \sin \left( {{\rm{ \mathsf{ π} }}t} \right), \xi \left( {{x_i}t} \right) = x_i^2, \theta = 2, \tau \left( t \right) = 1 - 0.5\sin t, {\tau _{\max }} = 1,\\ \tau \left( t \right) \le 0.5, f\left( {{x_i}\left( {t - \tau \left( t \right)} \right), t} \right) = \\{e^{ - x_i^2\left( {t - \tau \left( t \right)} \right)}}, g\left( {{x_i}, t} \right) = {e^{ - \cos \left( {{\rm{ \mathsf{ π} }}t} \right)x_i^2}}$

在仿真实验中取:t∈[0, 2π], η=0.5, c=0.5, q1=0.5, q2=0.4, q3=0.5

1) 当b(t)>0时, 取b(t)=5+0.2sin(πt)。通过仿真实验得出系统中各参数的迭代曲线图如图 1~图 6所示。

Download:
图 1 最大跟踪误差|ei|sup变化曲线1 Fig. 1 Change curve 1 of maximum tracking error |ei|sup
Download:
图 2 Nussbaum型函数v(·)变化曲线1 Fig. 2 Change curve 1 of Nussbaum-type function v(·)
Download:
图 3 时变参数ϑ(t)的变化曲线1 Fig. 3 Change curve 1 of time-varying parameter ϑ(t)
Download:
图 4 时不变参数θ的变化曲线1 Fig. 4 Change curve 1 of time-invariant parameter θ
Download:
图 5 时不变参数L的变化曲线1 Fig. 5 Change curve 1 of time-invariant parameter L
Download:
图 6 控制器ui(t)的变化曲线1 Fig. 6 Change curve 1 of controller ui(t)

2) 当b(t) < 0时, 取b(t)=-(5+0.2sin(πt))。通过实验仿真, 得出系统中各参数的迭代曲线图如图 7~图 12所示。

Download:
图 7 最大跟踪误差|ei|sup的变化曲线2 Fig. 7 Change curve 2 of maximum tracking error |ei|sup
Download:
图 8 Nussbaum型函数v(·)的变化曲线2 Fig. 8 Change curve 2 of Nussbaum-type function v(·)
Download:
图 9 时变参数ϑ(t)的变化曲线2 Fig. 9 Change curve 2 of time-varying parameter ϑ(t)
Download:
图 10 时不变参数θ的变化曲线2 Fig. 10 Change curve 2 of time-invariant parameter θ
Download:
图 11 时不变参数L的变化曲线2 Fig. 11 Change curve 2 of time-invariant parameter L
Download:
图 12 控制器ui(t)的变化曲线2 Fig. 12 Change curve 2 of controller ui(t)

图 1~图 12可以看出, 本文设计的非线性系统在迭代次数小于20次的情况下, 系统的最大跟踪误差和Nussbaum型函数已经开始收敛于0。根据文献[29]设计的非线性系统以及提供的仿真结果表明, 在方向为非时变常参数且不包含时变延迟的情况下, 其系统最大跟踪误差以及Nussbaum型函数在迭代次数120次以上才开始趋于收敛于0。通过与文献[29]比较可得出, 在时变未知控制方向和含有时变延迟的双重不确定条件下, 本文设计的系统依然能够以较少的迭代次数以及较高的执行效率运行, 也说明了本文系统在时效上的优越性和可行性。

5 结束语

本文针对控制方向未知且含有非线性延迟及参数和非参数化的不确定性系统进行了深入分析。利用Nussbaum函数和通过导入差分耦合型更新定律, 并结合Lyapunov函数给出系统收敛的充分条件, 设计出全新的自适应迭代方案, 使跟踪误差最终收敛于0, 并证明各信号的有界性。仿真结果证明了本文设计的合理性以及结果的可行性。

通过以上理论推导和实验仿真结果说明本文设计的自适应迭代学习策略在一阶系统中的有效性。在下一步研究工作中, 可以考虑将其应用到二阶或高阶的非线性不确定系统中, 通过与其他相关技术相结合, 用以解决未知控制方向和时变延迟对高阶不确定系统产生的影响。

参考文献
[1]
QU Zhihua, XU Jianxin. Model based learning control and their comparisons using Lyapunov direct method[J]. Asian Journal of Control, 2002, 4(1): 99-110.
[2]
XU Jianxin. The frontiers of iterative learning control-part Ⅱ[J]. Journal of Systems Control and Information, 2002, 45(5): 233-243.
[3]
XU Jianxin, TAN Ying. A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties[J]. IEEE Transactions on Automatic Control, 2002, 47(11): 1940-1945. DOI:10.1109/TAC.2002.804460
[4]
DIXON W E, ZERGEROGLU E, DAWSON D M, et al. Repetitive learning control:a Lyapunov-based approach[J]. IEEE Transactions on Systems, Man, and Cybernetics:Part B, 2002, 32(4): 538-545. DOI:10.1109/TSMCB.2002.1018772
[5]
XU Jianxin, YAN Rui. On repetitive learning control for periodic tracking tasks[J]. IEEE Transactions on Automatic Control, 2006, 51(11): 1842-1848. DOI:10.1109/TAC.2006.883034
[6]
CHIEN C J, HSU C T, YAO C Y. Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(5): 724-732. DOI:10.1109/TFUZZ.2004.834806
[7]
TAYEBI A. Adaptive iterative learning control for robot manipulators[J]. Automatica, 2004, 40(7): 1195-1203. DOI:10.1016/j.automatica.2004.01.026
[8]
PARK K H, HWANG D H, BIEN Z. Design of an iterative learning controller for a class of linear dynamic systems with time delay[J]. IEE Proceedings-Control Theory and Applications, 1998, 145(6): 507-512.
[9]
CHEN Yangquan, GONG Zhiming, WEN Changyun. Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays[J]. Automatica, 1998, 34(3): 345-353. DOI:10.1016/S0005-1098(97)00196-9
[10]
WANG M, GE S S. Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays[J]. IEEE Transactions on Neural Networks, 2010, 21(11): 1804-1816. DOI:10.1109/TNN.2010.2073719
[11]
YU Z, JIN Z, DU H. Adaptive neural control for a class of non-affine stochastic non-linear systems with time-varying delay:a Razumikhin-Nussbaum method[J]. IET Control Theory & Applications, 2012, 6(1): 14-23.
[12]
ZHANG Ruikun, HOU Zhongsheng, CHI Ronghu, et al. Adaptive iterative learning control for nonlinearly parameterised systems with unknown time-varying delays and input saturations[J]. International Journal of Control, 2015, 88(6): 1133-1141. DOI:10.1080/00207179.2014.994103
[13]
ZHAI Ding, XI Changjiang, DONG Jiuxiang, et al. Adaptive fuzzy fault-tolerant tracking control of uncertain nonlinear time-varying delay systems[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(5): 1840-1849. DOI:10.1109/TSMC.2018.2789441
[14]
WEI Jianming, ZHANG Youan, SUN Meimei, et al. Adaptive iterative learning control of a class of nonlinear time-delay systems with unknown backlash-like hysteresis input and control direction[J]. ISA Transactions, 2017, 70: 79-92. DOI:10.1016/j.isatra.2017.05.007
[15]
ZHANG Ruikun, HOU Zhongsheng, CHI Ronghu, et al. Adaptive iterative learning control for nonlinearly parameterised systems with unknown time-varying delays and input saturations[J]. International Journal of Control, 2015, 88(6): 1133-1141. DOI:10.1080/00207179.2014.994103
[16]
CHEN Weisheng, ZHANG Li. Adaptive iterative learning control for nonlinearly parameterized systems with unknown time-varying delays[J]. International Journal of Control, Automation and Systems, 2010, 8(2): 177-186.
[17]
NUSSBAUM R D. Some remarks on a conjecture in parameter adaptive control[J]. Systems & Control Letters, 1983, 3(5): 243-246.
[18]
YU Miao, YE Xudong, QI Donglian. Robust adaptive repetitive learning control for a class of time-varying nonlinear systems with unknown control direction[J]. Journal of Control Theory and Applications, 2013, 11(3): 336-342.
[19]
YANG Z Y, YAM S C P, LI L K, et al. Universal repetitive learning control for nonparametric uncertainty and unknown state-dependent control direction matrix[J]. IEEE Transactions on Automatic Control, 2010, 55(7): 1710-1715. DOI:10.1109/TAC.2010.2046935
[20]
TIAN Baijun, LIU Zhengjiang, ZHENG Yunfeng. Robust λ adaptive control for uncertain ship course keeping with unknown control direction[J]. Control and Decision, 2016, 31(11): 2059-2064. (in Chinese)
田佰军, 刘正江, 郑云峰. 控制方向未知条件下不确定船舶航向鲁棒λ调节控制[J]. 控制与决策, 2016, 31(11): 2059-2064.
[21]
LI Guangyin, YANG Yang. Learning control for nonlinear systems with unknown control direction and unknown time-varying delay[J]. Control Theory & Applications, 2016, 33(2): 265-272. (in Chinese)
李广印, 杨扬. 含有未知控制方向的非线性时滞系统学习控制[J]. 控制理论与应用, 2016, 33(2): 265-272.
[22]
JANSSENS P, PIPELEERS G, SWEVERS J. A data-driven constrained norm-optimal iterative learning control framework for LTI systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 546-551. DOI:10.1109/TCST.2012.2185699
[23]
YAN Weili, SUN Mingxuan. Adaptive iterative learning control of discrete-time varying systems with unknown control direction[J]. International Journal of Adaptive Control and Signal Processing, 2013, 27(4): 340-348. DOI:10.1002/acs.2312
[24]
WANG Yongchao, ZHANG Shengxiu, CAO Lijia, et al. Adaptive fuzzy backstepping control for nonlinear system with unknown control direction and input saturation[J]. Systems Engineering and Electronics, 2016, 38(9): 2149-2155. (in Chinese)
王永超, 张胜修, 曹立佳, 等. 控制方向未知的输入受限非线性系统自适应模糊反步控制[J]. 系统工程与电子技术, 2016, 38(9): 2149-2155.
[25]
SHEN Dong, WANG Youqing. ILC for networked nonlinear systems with unknown control direction through random Lossy channel[J]. Systems & Control Letters, 2015, 77: 30-39.
[26]
WANG Chunxiao, WU Yuqiang. Robust adaptive tracking control for full state-constrained nonlinear systems with unknown control direction[J]. Control Theory & Applications, 2018, 35(2): 153-161. (in Chinese)
王春晓, 武玉强. 控制方向未知的全状态约束非线性系统的鲁棒自适应跟踪控制[J]. 控制理论与应用, 2018, 35(2): 153-161.
[27]
MA Jianjun, ZHENG Zhipeng, LI Peng. Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 728-741. DOI:10.1109/TCYB.2014.2334695
[28]
LIU Baobin, ZHOU Wei. A high-order internal model based on robust adaptive iterative learning control design[J]. Control Engineering of China, 2018, 25(5): 770-776. (in Chinese)
刘保彬, 周伟. 基于高阶内模的鲁棒自适应迭代学习控制[J]. 控制工程, 2018, 25(5): 770-776.
[29]
XU Jianxin, YAN Rui. Iterative learning control design without a priori knowledge of the control direction[J]. Automatica, 2004, 40(10): 1803-1809. DOI:10.1016/j.automatica.2004.05.010