2. 南京邮电大学 江苏省无线通信重点实验室, 南京 210003
2. Wireless Communication Key Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
开放科学(资源服务)标志码(OSID):
为适应第5代(Fifth-Generation,5G)移动通信系统/超5代(Beyond Fifth-Generation,B5G)移动通信系统的不同应用场景,无线通信技术正在快速发展。作为5G/B5G网络的常见场景,热点场景发生在高密度移动用户的区域中,且在短时间内引起数据速率激增。为了满足这一需求,5G/B5G网络必须由考虑覆盖的宏小区部署转型到考虑容量的小小区部署,一般以用户为中心且由各类低功率基站(Base Station,BS)组成。将无人机(Unmanned Aerial Vehicle,UAV)与毫米波结合,可以显著提升5G/B5G网络的性能。
目前,UAV已经成为民用和军用领域中新兴的通信替代品[1]。与传统的地面蜂窝通信相比,UAV因其高移动性能够在热点场景中快速部署和建立通信[2]。由于UAV与地面用户之间以视距(Line of Sight,LoS)链路为主,能更好地形成空对地信道,因此未来5G/B5G网络架构将有可能从固定地面基础设施改良为空中移动连接[3]。为实现5G/B5G的超可靠和低延迟通信,可选择毫米波通信[4]。在UAV协助的无线通信系统中,UAV可以飞出阻塞区域以建立LoS链路,克服穿透损耗,有利于毫米波信号的传输。
在地面蜂窝网络和UAV网络共存的多层异构网络中,由于地面基站(Ground-Base Station,G-BS)/UAV基站(UAV-Base Station,U-BS)的位置存在不规则性,因此需要采用随机几何和空间点过程等数学方法来实现精确的建模和简化的分析[5-7]。同时,由于G-BS/U-BS和用户设备(User Equipment,UE)之间的空间耦合容量不足,为有效捕获UE和G-BS之间的耦合,文献[8-10]将UE热点中心建模为独立的泊松点过程(Poisson Point Process,PPP)。进一步地,为了在紧急和热点场景中增大网络容量并降低G-BS的负载,采用基于簇的方案[11],并且UE和UAV分布在相同的簇中心周围。然而,针对UAV协助的多层毫米波异构蜂窝网络,基于簇的UAV空中小小区的部署技术还不够成熟。文献[12]将空中移动BS的UAV位置建模成独立的PPP,但忽略了UE与U-BS耦合的问题。此外,文献[13]表明,通过部署多个空中UAV可以加强用户性能。
针对UAV通信中的吞吐量研究,文献[14]选择对UAV飞行路径进行规划来提高吞吐量,但却忽略了对地面多个节点的考虑。同样,基于路径规划的方法,文献[15]也达到了高吞吐量的目标,但却要求UAV保持匀速移动,在现实场景中操作性很低。文献[16]为最大化有限时间内的平均吞吐量提出了优化的UAV轨迹,但仅研究了时间对吞吐量的影响,并没有考虑其他因素比如功率等对吞吐量的影响。就本文的多层网络模型而言,其考虑了地面用户设备(Ground User Equipment,GUE)的存在以及多因素对系统性能的影响等。
针对紧急或热点场景,本文在毫米波频率上建立了一个由基于托马斯簇过程(Thomas Cluster Process,TCP)建模的U-BS和基于PPP建模的G-BS组成的UAV协助的多层毫米波异构蜂窝网络模型,其中将GUE的位置建模为泊松簇过程(Poisson Cluster Process,PCP),以PPP分布的G-BS作为U-BS与地面热点中心自然耦合的父点过程,同样也是GUE的父点过程。为提高该多层网络模型的平均区域吞吐量(Average Area Throughput,AAT)并发掘簇间级联对网络性能的影响,本文基于最强的长期平均偏置接收功率(Biased Received Power,BRP)构建GUE级联策略,并得出典型GUE与每层G-BS/U-BS级联的概率。根据典型GUE所受干扰的拉普拉斯变换(Laplace Transform,LT)以及条件覆盖概率等推导出系统AAT。同时,研究了U-BS投影在地面上的分布方差、G-BS密度对级联概率的影响以及不同级联方案可获取的AAT。
1 系统模型与假设 1.1 系统模型本文针对现实热点场景搭建了一个包含G-BS和U-BS的毫米波异构蜂窝网络,其中宏小区和小小区分别由G-BS和U-BS组成。为了减轻G-BS的流量负载,假定空中U-BS成簇且投影在G-BS周围。在欧几里得平面上,将G-BS的位置建模成密度为
$ {f}_{Y}\left(y\right)=\frac{1}{2\mathrm{\pi }{\sigma }^{2}}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{{‖y‖}^{2}}{2{\sigma }^{2}}\right) $ | (1) |
其中:
$ {f}_{R}\left(r\right)=\frac{r}{{\sigma }^{2}}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{{r}^{2}}{2{\sigma }^{2}}\right) $ | (2) |
此外,构建了额外的2个层:1层
如图 1所示,
![]() |
Download:
|
图 1 UAV协助的多层毫米波异构蜂窝网络布局 Fig. 1 Layout of UAV-assisted multi-tier millimeter-wave heterogeneous cellular networks |
对于传输过程中产生的损耗,本文采用了LoS球模型,
![]() |
下载CSV 表 1 发射增益值和概率 Table 1 Transmit gain values and probabilities |
为了突出多层网络模型的优势,本文对2种级联方案进行比较,即2层级联方案和4层级联方案。传统的2层级联方案仅考虑了典型GUE与簇内G-BS/U-BS进行级联,而本文提出的4层级联方案则全面考虑了典型GUE分别与簇内及簇间的G-BS/U-BS级联的所有情况。采用4层级联方案,有利于量化簇间G-BS/U-BS对UAV协助的多层毫米波异构蜂窝网络性能的影响。
这2种级联方案均遵循最大BRP准则,即典型GUE将与提供最强的长期平均BRP的G-BS/U-BS级联[21-23]。因此,当典型GUE与
$ i=\mathrm{a}\mathrm{r}\mathrm{g}\underset{k\in \left\{\mathrm{1, 2}, \mathrm{3, 4}\right\}}{\mathrm{m}\mathrm{a}\mathrm{x}}\left\{{P}_{k}{B}_{k}{G}_{{M}_{k}}{L}_{k}^{-1}\left(x\right)\right\} $ | (3) |
其中:
由于0层和2层的G-BS/U-BS位于代表簇内,有且仅有唯一距离典型GUE最近的簇内G-BS/U-BS,在大多数情况下,可以通过调整UAV的位置和高度来改变典型GUE与簇内G-BS/U-BS之间的链路状态。因此,链路状态可以为LoS或NLoS。考虑将0层和2层的路径损耗建模为2种状态的模型,在链路
$ {A_{i, t}} = PL_{i, t'}^{ - 1} > L_{i, t}^{ - 1} \times \prod\limits_{k \in \left\{ {0, 1, 2, 3} \right\}\backslash i} {P\left( {{L_k} > {C_{k, i}}{L_{i, t}}} \right)} $ | (4) |
其中:
$ {A_{i, t}} = P_i^sP\left( {{L_{k\backslash i}} > {C_{k, i}}{L_{i, t}}} \right) \times \prod\limits_{k \in \left\{ {{\rm{1}}, {\rm{3}}} \right\}} P \left( {{L_k} > {C_{k, i}}{L_{i, t}}} \right) $ | (5) |
其中:
$ {A_i} = \prod\limits_{k \in \left\{ {{\rm{0}}, {\rm{1}}, {\rm{2}}, {\rm{3}}} \right\}\backslash i} {P\left( {{L_k} > {C_{k, i}}{L_i}} \right)} $ | (6) |
为了便于网络性能的分析,本节引入了干扰的LT。当典型的GUE与
当典型GUE受到0层U-BS干扰的链路处于LoS状态时,典型GUE受到的干扰
$ \begin{array}{l} L_{{I_{i, t'}}}^{0, {\rm{L}}}\left( s \right) = {\rm{exp}} - \left( {\bar m\int_{\min \left( {{L_{0, L}}\left( {{R_0}} \right), {C_{0, i}}{L_{i, t'}}\left( {{X_{i, t'}}} \right)} \right)}^{{L_{0, L}}\left( {{R_0}} \right)} {} } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\left( {1 - \sum\limits_{i = 1}^4 {\frac{{{b_{0, i}}N_{0, t}^{{N_{0, L}}}}}{{{{\left( {{N_{0, L}} + s{P_0}{G_{0, i}}{t^{ - 1}}{N_{0, L}}} \right)}^{{N_{0, L}}}}}}} } \right){f_{{L_{0, L}}}}\left( t \right){\rm{d}}t} \right) \end{array} $ | (7) |
其中:
概率密度函数为:
$ \begin{array}{l} {f_{{L_{0, L}}}}\left( t \right) = - {\rm{exp}}\left( { - {\Lambda _{0, L}}\left( {\left( {0, {{\left( {{t^{2/{\alpha _{0, L}}}} - {H^2}} \right)}^{{\alpha _{0, L}}/2}}} \right]} \right)} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{\rm{d}}{\Lambda _{0, L}}\left( {\left( {0, {{\left( {{t^{2/{\alpha _{0, L}}}} - {H^2}} \right)}^{{\alpha _{0, L}}/2}}} \right]} \right)}}{{{\rm{d}}t}} \end{array} $ | (8) |
其中:
当典型GUE受到0层U-BS干扰的链路处于NLoS状态时,典型GUE受到的干扰
$ {L}_{{I}_{i, t'}^{0, N}}\left(s\right)=\mathrm{e}\mathrm{x}\mathrm{p}\left(-\stackrel{-}{m}\left({P}_{0}^{N}{L}_{\mathrm{I}\mathrm{n}}+{L}_{\mathrm{O}\mathrm{u}\mathrm{t}}\right)\right) $ | (9) |
输入干扰
$ \begin{aligned} L_{\mathrm{In}} &=\int_{\min \left(L_{0, N}\left(R_{0}\right), C_{0, i} L_{i, 0}\left(x_{i, t}\right)\right)}^{L_{0, N}\left(R_{0}\right)} \\ & \;\;\; \left(1-\sum\limits_{j=1}^{4} \frac{b_{0, j} N_{0, N}^{N_{0, N}}}{\left(N_{0, N}+s P_{0} G_{0, j} t^{-1}\right)^{1 / N_{0, N}}}\right) f_{L_{0, N}}(t) \mathrm{d} t \end{aligned} $ | (10) |
$ \begin{array}{l}{L}_{\mathrm{O}\mathrm{u}\mathrm{t}}={\int }_{\mathrm{m}\mathrm{a}\mathrm{x}\left({L}_{0, N}\left({R}_{0}\right), {C}_{0, i}{L}_{i, 0}\left({X}_{i, t'}\right)\right)}^{\mathrm{\infty }}\\ \;\;\;\;\;\;\;\;\;\; \left( {1 - \sum\limits_{j = 1}^4 {\frac{{{b_{0, j}}N_{0, t}^{{N_{0, t}}}}}{{{{\left( {{N_{0, t}} + s{P_0}{G_{0, j}}L_{0, N}^{ - 1}{N_{0, t}}} \right)}^{1/{N_{0, t}}}}}}} } \right){f_{{L_{0, N}}}}\left( t \right){\rm{d}}t \end{array} $ | (11) |
概率密度函数为:
$ \begin{array}{l}{f}_{{L}_{0, N}}(t)=-\mathrm{e}\mathrm{x}\mathrm{p}\left(-{\mathit{\Lambda} }_{0, N}\left(\left(0, {\left({t}^{2/{\alpha }_{0, N}}-{H}^{2}\right)}^{{\alpha }_{0, N}/2}\right]\right)\right)\times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \frac{\mathrm{d}{\mathit{\Lambda} }_{0, N}\left(\left(0, {\left({t}^{2/{\alpha }_{0, N}}-{H}^{2}\right)}^{{\alpha }_{0, N}/2}\right]\right)}{\mathrm{d}t}\end{array} $ | (12) |
当典型GUE受到2层G-BS干扰的链路处于LoS状态时,典型GUE受到的干扰
$ {L_{_{{I_{i, t'}}}^{2, L}}}\left( s \right) = \sum\limits_{j = 1}^4 {{b_{2, j}}} {L_{I_{2, L}^{{G_{2, j}}}}}\left( s \right) $ | (13) |
干扰
$ {L}_{{I}_{2, L}^{{G}_{2, j}}}(s)={\int }_{\mathrm{m}\mathrm{i}\mathrm{n}\left({L}_{2, L}\left({R}_{2}\right), {C}_{2, i}{L}_{i, t'}\left({X}_{i, t'}\right)\right)}^{{L}_{2, L}\left({R}_{2}\right)}\frac{{N}_{2, L}}{{\left({N}_{2, L}+s{P}_{2}{G}_{2, j}{t}_{}^{-1}\right)}^{{N}_{2, L}}}\times \frac{{f}_{{L}_{2, L}}\left(t\right)}{\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{1}{2{\sigma }^{2}}{\left({C}_{2, i}{L}_{i, t'}\left({X}_{i, t'}\right)\right)}^{2/{\alpha }_{2, L}}\right)-\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{1}{2{\sigma }^{2}}{\left({L}_{2, L}\left({R}_{2}\right)\right)}^{2/{\alpha }_{2, L}}\right)}\mathrm{d}t $ | (14) |
概率密度函数为:
$ {f}_{{L}_{2, L}}(t)=-\mathrm{e}\mathrm{x}\mathrm{p}\left(-{\mathit{\Lambda} }_{2, L}\left(\left(0, t\right]\right)\right)\frac{\mathrm{d}{\mathit{\Lambda} }_{2, L}\left(\left(0, t\right]\right)}{\mathrm{d}t} $ | (15) |
当典型GUE受到2层G-BS干扰的链路处于NLoS状态时,典型GUE受到的干扰
$ {L}_{{I}_{i, t'}^{2, N}}(s)=\sum\limits_{j = 1}^4 {{b_{2, j}}} \left({P}_{2, N}{L}_{{I}_{2, N-1}^{{G}_{2, j}}}(s)+{L}_{{I}_{2, N-2}^{{G}_{2, j}}}\right) $ | (16) |
干扰
$ \begin{array}{l}{L}_{{I}_{2, N-1}^{{G}_{2, \mathrm{j}}}}(s)={\int }_{\mathrm{m}\mathrm{i}\mathrm{n}\left({L}_{2, L}\left({R}_{2}\right), {C}_{2, i}{L}_{i, t'}\left({X}_{i, t'}\right)\right)}^{{L}_{2, t}\left({R}_{2}\right)}\frac{{N}_{2, N}^{}}{{\left({N}_{2, N}^{}+s{P}_{2}{G}_{2, j}{t}_{}^{-1}\right)}^{{N}_{2, N}}}\times \frac{1}{\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{1}{2{\sigma }^{2}}{\left({C}_{2, i}{L}_{i, t'}\left({X}_{i, t'}\right)\right)}^{2/{\alpha }_{2, N}}\right)-\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{1}{2{\sigma }^{2}}{\left({L}_{2, L}\left({R}_{2}\right)\right)}^{2/{\alpha }_{2, N}}\right)}\times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \frac{{t}^{2/{\alpha }_{2, N-1}}}{{\sigma }^{2}{\alpha }_{2, N}}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{1}{2{\sigma }^{2}}{t}^{2/{\alpha }_{2, N}}\right)\mathrm{d}t\end{array} $ | (17) |
$ {L}_{{I}_{2, N-2}^{{G}_{2, j}}}(s)={\int }_{\mathrm{m}\mathrm{a}\mathrm{x}\left({C}_{2, i}{L}_{i, t'}\left({X}_{i, t'}\right), {R}_{2}\right)}^{\mathrm{\infty }}\frac{{N}_{2, N}^{}}{{\left({N}_{2, N}^{}+s{P}_{2}{G}_{2, j}{t}_{}^{-1}\right)}^{{N}_{2, N}}}\times \frac{1}{\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{1}{2{\sigma }^{2}}{\left({L}_{2, L}\left({R}_{2}\right)\right)}^{2/{\alpha }_{2, N}}\right)}\times \frac{{t}^{2/{\alpha }_{2, N-1}}}{{\sigma }^{2}{\alpha }_{2, N}}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{1}{2{\sigma }^{2}}{t}^{2/{\alpha }_{2, N}}\right)\mathrm{d}t $ | (18) |
如上文所述,典型GUE与1层和3层的G-BS/U-BS之间的链路状态为NLoS。因此,典型GUE受到1层簇间U-BS干扰
$ \begin{array}{l}{L}_{{I}_{i, t'}^{1}}(s)=\\ \mathrm{e}\mathrm{x}\mathrm{p}\left(\stackrel{}{\underset{}{\stackrel{\stackrel{}{}}{\underset{}{-}}}}2\mathrm{\pi }{\lambda }_{\mathrm{G}-\mathrm{B}\mathrm{S}}\stackrel{-}{m}\right.\left.{\int }_{0}^{\mathrm{\infty }}\left(1-\mathop \sum \limits_{i = 1}^4 \frac{{b}_{1, j}{N}_{1}^{{N}_{1}^{}}}{{\left({N}_{1}^{}+s{P}_{1}{G}_{1, j}{t}_{}^{-1}\right)}^{{N}_{1}}}\right){t}_{}^{\frac{2}{{\alpha }_{1}}-1}\frac{1}{{\alpha }_{1}}\mathrm{d}t\right)\end{array} $ | (19) |
典型GUE受到3层簇间G-BS干扰
$ \begin{array}{*{20}{l}} {{L_{I_{i, t'}^3}}\left( s \right) = {\rm{exp}}\left( { - \int_{{G_{3, i}}{L_{i, 0}}\left( {{X_{i, t'}}} \right)}^\infty {\left( {1 - \sum\limits_{i = 1}^4 {\frac{{{b_{1, i}}N_3^{N_3^{}}}}{{{{\left( {N_3^{} + s{P_3}{G_{3, i}}t_{}^{ - 1}} \right)}^{{N_3}}}}}} } \right)} } \right. \times }\\ {\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;{\mathit{\Lambda} _3}\left( {\left[ {0, dt} \right]} \right)} \right)} \end{array} $ | (20) |
本节研究了系统的AAT,即给定带宽时单位时间单位区域内传输的下行链路平均位数。在所考虑的通信场景中,给定信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)阈值
$ {P}_{0, t'}\left(\tau \right)=\mathbb{E}\left\{ {\sum\limits_{n = 1}^{{N_{0, t'}}} {{{\left( { - 1} \right)}^{n + 1}}} \left( {\begin{array}{*{20}{c}} {{N_{0, t'}}}\\ n \end{array}} \right){\rm{exp}}\left( { - i\sigma _{0, t'}^2{L_{0, t'}}\left( {{X_{0, t'}}} \right)\sigma _0^2} \right)} \right.\left. {\left( {\prod\limits_{t \in \left\{ {L, N} \right\}} {{L_{I_{0, t'}^{0, t}}}} \left( s \right)\sum\limits_{t \in \left\{ {L, N} \right\}} {{L_{I_{0, t'}^{2, t}}}} \left( s \right)\prod\limits_{k = \left\{ {{\rm{1}}, {\rm{3}}} \right\}} {{L_{I_{0, t'}^k}}} \left( s \right)} \right)\left| {s = n\sigma _{0, t'}^2{L_{0, t'}}\left( {{X_{0, t'}}} \right)} \right.} \right\} $ | (21) |
$ {P}_{2, t'}\left(\tau \right)=\mathbb{E} \left\{ {\sum\limits_{n = 1}^{{N_{2, t'}}} {{{\left( { - 1} \right)}^{n + 1}}} \left( {\begin{array}{*{20}{c}} {{N_{2, t'}}}\\ n \end{array}} \right){\rm{exp}}\left( { - n\sigma _{2, t'}^2{L_{2, t'}}\left( {{X_{2, t'}}} \right)\sigma _0^2} \right)} \right.\left( {\prod\limits_{t \in \left\{ {L, N} \right\}} {{L_{I_{2, t'}^{0, t}}}} \left( s \right)\prod\limits_{k = \left\{ {{\rm{1}}, {\rm{3}}} \right\}} {{L_{I_{2, t'}^k}}} \left( s \right)} \right)\left. {\left| {s = n\sigma _{2, t'}^2{L_{2, t'}}\left( {{X_{2, t'}}} \right)} \right.} \right\} $ | (22) |
$ {P}_{i}\left(\tau \right)=\mathbb{E}\left\{ {\sum\limits_{n = 1}^{{N_i}} {{{\left( { - 1} \right)}^{n + 1}}} \left( {\begin{array}{*{20}{l}} {{N_i}}\\ n \end{array}} \right){\rm{exp}}\left( { - n\sigma _i^2{L_j}\left( {{r_3}} \right)\sigma _0^2} \right)} \right.\left. {\left( {\left( {\sum\limits_{t \in \left\{ {L, N} \right\}} {{L_{I_i^{2, t}}}} \left( s \right)} \right)\left( {\prod\limits_{t \in \left\{ {L, N} \right\}} {{L_{I_i^{0, t}}}} \left( s \right)} \right)\left( {{L_{{I_i}}}{{\left( s \right)}_{i \ne j}}} \right)} \right)\left| {s = } \right.n\sigma _i^2{L_i}\left( {{X_i}} \right)} \right\} $ | (23) |
其中:
$ {R}_{\mathrm{T}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}}={R}_{\mathrm{U}-\mathrm{B}\mathrm{S}}+{R}_{\mathrm{G}-\mathrm{B}\mathrm{S}} $ |
其中:
$ {R}_{{D}_{0}}=\stackrel{-}{m}W\mathrm{l}\mathrm{b}\left(1+\tau \right)\left({A}_{0, L}{P}_{0, L}\left(\tau \right)+{A}_{0, N}{P}_{0, N}\left(\tau \right)\right) $ | (24) |
$ {R}_{{D}_{1}}=\stackrel{-}{m}{\lambda }_{\mathrm{G}-\mathrm{B}\mathrm{S}}W\mathrm{l}\mathrm{b}\left(1+\tau \right){A}_{1}{P}_{1}\left(\tau \right) $ | (25) |
$ {R}_{{D}_{2}}=W\mathrm{l}\mathrm{b}\left(1+\tau \right)\left({A}_{2, L}{P}_{2, L}\left(\tau \right)+{A}_{2, N}{P}_{2, N}\left(\tau \right)\right) $ | (26) |
$ {R}_{{D}_{3}}={\lambda }_{\mathrm{G}-\mathrm{B}\mathrm{S}}\mathrm{l}\mathrm{b}\left(1+\tau \right){A}_{3}{P}_{3}\left(\tau \right) $ | (27) |
由上述推导和分析,本节给出了仿真和数值结果,验证了理论推导的正确性,并分析了不同网络参数对级联概率和可获取的AAT的影响。为清晰可见,除非另有说明,所有的仿真分析均使用表 2中的参数值。
![]() |
下载CSV 表 2 仿真系统参数值 Table 2 Parameter values of simulation system |
基于以上参数配置,图 2所示为相关系统参数对级联概率产生的影响。其中,图 2(a)给出了级联概率与U-BS投影在地面上的分布方差
![]() |
Download:
|
图 2 级联概率的比较分析 Fig. 2 Comparative analysis of association probability |
图 3给出了在簇成员平均数
![]() |
Download:
|
图 3 平均区域吞吐量的比较分析 Fig. 3 Comparative analysis of average area throughput |
本文构建一种UAV协助的多层毫米波异构蜂窝网络。基于最大BRP准则,研究5G/B5G网络热点场景下的级联概率。通过随机几何的方法,利用典型GUE的级联概率及覆盖概率,推导出系统AAT的表达式,并分析相关参数对系统性能的影响。仿真结果表明,本文4层级联方案更有利于网络资源的开发,显著提高了网络性能。下一步将研究UAV协助的多层毫米波异构蜂窝网络中典型GUE的平均SINR覆盖概率。
[1] |
SEKANDER S, TABASSUM H, HOSSAIN E. Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects[J]. IEEE Communications Magazine, 2018, 56(3): 96-103. DOI:10.1109/MCOM.2018.1700666 |
[2] |
ZHANG S W, ZHU X T, YUN X. Research on the initial beam correlation scheme for UAV-assisted 5G HetNets[J]. Application of Electronic Technique, 2020, 46(3): 33-37. (in Chinese) 张少伟, 朱雪田, 云翔. 5G无人机异构网络的初始波束关联方案研究[J]. 电子技术应用, 2020, 46(3): 33-37. |
[3] |
ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36-42. DOI:10.1109/MCOM.2016.7470933 |
[4] |
WANG X, KONG L, KONG F, et al. Millimeter wave communication: a comprehensive survey[J]. IEEE Communications Surveys and Tutorials, 2018, 20(3): 1616-1653. DOI:10.1109/COMST.2018.2844322 |
[5] |
HAENGGI M. Stochastic geometry for wireless networks[M]. New York, USA: Cambridge University Press, 2012.
|
[6] |
MUKHERJEE S. Analytical modeling of heterogeneous cellular networks[M]. New York, USA: Cambridge University Press, 2013.
|
[7] |
ELSAWY H, HOSSAIN E, HAEGGGI M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey[J]. IEEE Communications Surveys & Tutorials, 2013, 15(3): 996-1019. |
[8] |
DONG X, ZHENG F C, ZHU X, et al. On the local delay and energy efficiency of clustered HetNets[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2987-2999. DOI:10.1109/TVT.2019.2896291 |
[9] |
SHI M W, YANG K, HAN Z, et al. Coverage analysis of integrated sub-6 GHz-mmWave cellular networks with hotspots[J]. IEEE Transactions on Communications, 2019, 67(11): 8151-8164. DOI:10.1109/TCOMM.2019.2939802 |
[10] |
AFSHANG M, DHILLON H S, CHONG P H J. Fundamentals of cluster-centric content placement in cache-enabled device-to-device networks[J]. IEEE Transactions on Communications, 2015, 64(6): 2511-2526. |
[11] |
TABASSUM H, HOSSAIN E, HOSSAIN M J. Modeling and analysis of uplink non-orthogonal multiple access in large-scale cellular networks using poisson cluster processes[J]. IEEE Transactions on Communications, 2017, 65(8): 3555-3570. |
[12] |
ZHU Y, ZHENG G, FITCH M. Secrecy rate analysis of UAV-enabled mmWave networks using Matérn hardcore point processes[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(7): 1397-1409. DOI:10.1109/JSAC.2018.2825158 |
[13] |
SHI D X, HONG C, KANG Y, et al. Cloud-based Control System Architecture for Multi-UAVs Cooperative Flight[J/OL]. Chinese Journal of Computers, 2019: 1-19. [2020-03-26]. http://kns.cnki.net/kcms/detail/11.1826.TP.20191216.1554.008.html. (in Chinese) 史殿习, 洪臣, 康颖, 等. 面向多无人机协同飞行控制的云系统架构[J/OL]. 计算机学报, 2019: 1-19. [2020-03-26]. http://kns.cnki.net/kcms/detail/11.1826.TP.20191216.1554.008.html. |
[14] |
PARK J, LEE H, EOM S, et al. UAV-aided wireless powered communication networks: trajectory optimization and resource allocation for minimum throughput maximization[J]. IEEE Access, 2019, 16: 1536-1553. |
[15] |
ZHANG J, ZENG Y, ZHANG R. Spectrum and energy efficiency maximization in UAV-enabled mobile relaying[C]//Proceedings of IEEE International Conference on Communications. Paris, France: IEEE Press, 2017: 1-6.
|
[16] |
ZENG Y, ZHANG R, LIM T J. Throughput maximization for mobile relaying systems[J]. IEEE Transactions on Wireless Communications, 2016, 64(12): 4983-4996. DOI:10.1109/TCOMM.2016.2611512 |
[17] |
WANG X, GURSOY M C. Uplink coverage in heterogeneous mmWave cellular networks with user-centric small cell deployments[C]//Proceedings of the 88th IEEE Vehicular Technology Conference. Chicago, USA: IEEE Press, 2018: 1-5.
|
[18] |
HE E L, JI P S, JIA X D, et al. Position-aided adaptive channel estimation for mm-Wave UAV communications[J]. Computer Engineering, 2020, 46(6): 196-201. (in Chinese) 何尔利, 纪澎善, 贾向东, 等. 位置协助的无人机毫米波通信网络自适应信道估计[J]. 计算机工程, 2020, 46(6): 196-201. |
[19] |
JIA X, DENG P, YANG L, et al. Spectrum and energy efficiencies for multiuser pairs massive MIMO systems with full-duplex amplify-and-forward relay[J]. IEEE Access, 2015, 3: 55637-55649. |
[20] |
JIA X, XU W, CHEN Y, et al. Hybrid self-backhaul and cache assisted millimeter wave two-tier heterogeneous networks with MIMO equipped backhaul access points[J]. IEEE Access, 2019, 7: 59963-59983. DOI:10.1109/ACCESS.2019.2914694 |
[21] |
XU W J, JIA X D, YANG X R, et al. A novel m-th best user association scheme for multi-tier heterogeneous networks[J]. Journal of Signal Processing, 2019, 35(2): 275-284. (in Chinese) 徐文娟, 贾向东, 杨小蓉, 等. 多层异构网络第m阶用户级联方案[J]. 信号处理, 2019, 35(2): 275-284. |
[22] |
JO H S, SANG Y J, XIA P, et al. Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis[J]. IEEE Transactions on Wireless Communications, 2012, 11(10): 3484-3495. DOI:10.1109/TWC.2012.081612.111361 |
[23] |
SINGH S, ZHANG X, ANDREWS J. Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets[J]. IEEE Transactions on Wireless Communications, 2015, 14(10): 657-569. |