[1] Mildenhall B, Srinivasan P P, Tancik M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
[2] Fridovich-Keil S, Yu A, Tancik M, et al. Plenoxels: Radiance fields without neural networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 5501-5510.
[3] Sun C, Sun M, Chen H T. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 5459-5469.
[4] Li L, Shen Z, Wang Z, et al. Compressing volumetric radiance fields to 1 mb[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 4222-4231.
[5] Müller T, Evans A, Schied C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM transactions on graphics (TOG), 2022, 41(4): 1-15.
[6] Chen A, Xu Z, Geiger A, et al. Tensorf: Tensorial radiance fields[C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2022: 333-350.
[7] Reiser C, Peng S, Liao Y, et al. Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 14335-14345.
[8] Li S, Li H, Liao Y, et al. NeRFCodec: Neural feature compression meets neural radiance fields for memory-efficient scene representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 21274-21283.
[9] Kerbl B, Kopanas G, Leimkühler T, et al. 3d gaussian splatting for real-time radiance field rendering[J]. ACM Trans. Graph., 2023, 42(4): 139:1-139:14.
[10] Lu T, Yu M, Xu L, et al. Scaffold-gs: Structured 3d gaussians for view-adaptive rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 20654-20664.
[11] Ren K, Jiang L, Lu T, et al. Octree-gs: Towards consistent real-time rendering with lod-structured 3d gaussians[J]. arXiv preprint arXiv:2403.17898, 2024.
[12] Chen Y, Wu Q, Lin W, et al. Hac: Hash-grid assisted context for 3d gaussian splatting compression[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 422-438.
[13] Wang Y, Li Z, Guo L, et al. Contextgs: Compact 3d gaussian splatting with anchor level context model[J]. Advances in neural information processing systems, 2024, 37: 51532-51551.
[14] Papantonakis P, Kopanas G, Kerbl B, et al. Reducing the memory footprint of 3d gaussian splatting[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2024, 7(1): 1-17.
[15] Girish S, Gupta K, Shrivastava A. Eagles: Efficient accelerated 3d gaussians with lightweight encodings[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 54-71.
[16] Fan Z, Wang K, Wen K, et al. Lightgaussian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps[J]. Advances in neural information processing systems, 2024, 37: 140138-140158.
[17] Fang G, Wang B. Mini-splatting: Representing scenes with a constrained number of gaussians[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 165-181.
[18] Hanson A, Tu A, Singla V, et al. Pup 3d-gs: Principled uncertainty pruning for 3d gaussian splatting[C]//Proceedings of the Computer Vision and Pattern Recognition Conference. 2025: 5949-5958.
[19] Hanson A, Tu A, Lin G, et al. Speedy-splat: Fast 3d gaussian splatting with sparse pixels and sparse primitives[C]//Proceedings of the Computer Vision and Pattern Recognition Conference. 2025: 21537-21546.
[20] Zhang Z, Song T, Lee Y, et al. LP-3DGS: Learning to Prune 3D Gaussian Splatting[J]. arXiv preprint arXiv:2405.18784, 2024.
[21] Wang H, Zhu H, He T, et al. End-to-end rate-distortion optimized 3d gaussian representation[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 76-92.
[22] Lee J C, Rho D, Sun X, et al. Compact 3d gaussian representation for radiance field[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 21719-21728.
[23] Li X, Li K, Zhang G, et al. LFVGS: lightweight Gaussian splatting method for few-shot view synthesis[J]. The Journal of Supercomputing, 2025, 81(4): 1-26.
[24] Navaneet K L, Pourahmadi Meibodi K, Abbasi Koohpayegani S, et al. Compgs: Smaller and faster gaussian splatting with vector quantization[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 330-349.
[25] Kou Y, Ye Q, Zhang Y, et al. AMQGaussian: Efficient 3D Gaussian Representation with Asymmetric Mixed-precision Quantization[C]//2024 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE, 2024: 1563-1570.
[26] 宋明清,郭尧,李晓峰,等.基于光照探针的三维高斯辐射场压缩算法[J/OL].计算机应用研究,1-8[2025-07-11].
Song Mingqing, Guo Yao, Li Xiaofeng, et al. Compression algorithm for 3d Gaussian radiance fields based on light probes [J]. Application Research of Computers, 2025, 42 (8). (2025-04-17).
[27] Morgenstern W, Barthel F, Hilsmann A, et al. Compact 3d scene representation via self-organizing gaussian grids[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 18-34.
[28] Niedermayr S, Stumpfegger J, Westermann R. Compressed 3d gaussian splatting for accelerated novel view synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 10349-10358.
[29] Farooq U, Guillemaut J Y, Hilton A, et al. Optimized 3D Gaussian Splatting using Coarse-to-Fine Image Frequency Modulation[J]. arXiv preprint arXiv:2503.14475, 2025.
[30] Müller C. Spherical harmonics[M]. Springer, 2006.
[31] P Pavlov I. 7-Zip LZMA SDK Technical Reference[EB/OL]. 〈2015-6-14〉[2025-07-19]. https://www.7-zip.org/sdk.html.
[32] Barron J T, Mildenhall B, Verbin D, et al. Mip-nerf 360: Unbounded anti-aliased neural radiance fields[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 5470-5479.
[33] Hedman P, Philip J, Price T, et al. Deep blending for free-viewpoint image-based rendering[J]. ACM Transactions on Graphics (ToG), 2018, 37(6): 1-15.
[34] Knapitsch A, Park J, Zhou Q Y, et al. Tanks and temples: Benchmarking large-scale scene reconstruction[J]. ACM Transactions on Graphics (ToG), 2017, 36(4): 1-13.
|