[1] 谢亚威, 赵永辰, 李轶璠, 等. 针灸干预卒中后认知障碍的作用机制研究进展[J]. 中华中医药杂志, 2024, 39(7): 3571-3574.
Xie Y W, Zhao Y C, Li Y F. Research progress on the mechanism of post-stroke cognitive impairment byacupuncture and moxibustion intervention [J]. Chin J Tradit Chin Med, 2024, 39(7): 3571-3574.
[2] Collaborators G 2 N. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016 [J]. Lancet Neurol, 2019, 18(5): 459-480.
[3] Li X, Wu C Q, Lu J P, et al. Cardiovascular risk factors in China: A nationwide population-based cohort study[J]. Lancet Public Health, 2020, 5(12): 672-681.
[4] Zhang H Y, Jin B W, You X Y, et al. Pharmacodynamic advantages and characteristics of traditional Chinese medicine in prevention and treatment of ischemic stroke [J]. Chin Herb Med, 2023, 15(4): 496-508.
[5] 林星茹,赵盈喆,刘亚,等.东亚地区物理治疗师配置、教育培训与职业准入体系的比较研究[J].中国康复理论与实践,2022,28(11):1334-1341.
LIN Xingru, ZHAO Yingzhe, LIU Ya, et al. Comparative study of physical therapist allocation, education and training, and professional accreditation system in East Asia[J]. Chinese Journal of Rehabilitation Medicine, 2022,28(11):1334-1341.
[6] 顾琦, 田湉, 张芳芳, 等. 上肢康复机器人辅助治疗对改善脑卒中单侧忽略的疗效观察[J].中国康复医学杂志, 2020, 35(2): 166-170.
GU Qi, TIAN Tian, ZHANG Fangfang, et al. Therapeutic effectiveness of upper limb rehabilitation robot- aided training on the unilateral neglect caused by stroke[J]. Chinese Journal of Rehabilitation Medicine, 2020, 35(2): 166-170.
[7] 范子珍, 罗睿铭, 戴瑞, 等. 基于OpenSim人机耦合仿真的外骨骼设计方法[J]. 机械设计, 2022, 39(03): 123-129.
FAN Zi-zhen, LUO Rui-ming, DAI Rui, et al. Exoskeleton design method based on human-machine coupling simulation in OpenSim[J]. Journal of Machine Design, 2022, 39(03): 123-129.
[8] Scott L. Delp, J.Peter Loan, A graphics-based software system to develop and analyze models of musculoskeletal structures[J]. Computers in Biology and Medicine, 1995, 25(1): 21-34
[9] S. L. Delp and J. P. Loan, A computational framework for simulating and analyzing human and animal movement[J]. Computing in Science & Engineering, 2000, 2(5): 46-55.
[10] 刘利利. 基于Matlab-OpenSim的上肢个体差异建模及肌肉力预测分析[D]. 新疆大学, 2021.
Liu Lili. Upper Limb Subject-Specific Modeling and Muscle Forces Predicting Based on Matlab-OpenSim Software Interface[D]. Xinjiang University, 2021.
[11] Delp S L, Anderson F C, Arnold A S, et al. OpenSim: open source to create and analyze dynamic simulations of movement[J]. IEEE Transactions on Bio-medical Engineering, 2007, 54(11): 1940-1950.
[12] Misagh Mansouri, Jeffrey A. Reinbolt, A platform for dynamic simulation and control of movement based on OpenSim and MATLAB[J]. Journal of Biomechanics, 2012, 45(8): 1517-1521.
[13] Claire V. Hammond, Spencer T. Williams, Marleny M. Vega, et al. The Neuromusculoskeletal Modeling Pipeline: MATLAB-based model personalization and treatment optimization functionality for OpenSim[J]. Journal of NeuroEngineering and Rehabilitation, 2025, 22(1): 112-112.
[14] Holzbaur, Katherine RS, Wendy M. Murray, and Scott L. Delp. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control[J]. Annals of biomedical engineering, 2005, 33(6): 829-840.
[15] 刘恩辰, 梁蔓安. 上肢康复机器人研究进展康复工程[J]. 中国康复理论与实践, 2014, 20(9): 895-897.
LIU En-chen, LIANG Man-an. Advance in Upper Limb Rehabilitation Robot[J]. Chinese Journal of Rehabilitation Theory and Practice, 2014, 20(9): 895-897.
[16] BAYONA N A, BITENSKY J, SALTER K, et al. The role of task specific training in rehabilitation therapies[J]. Topics in Stroke Rehabilitation, 2005, 12(3): 58-65.
[17] N. Hogan, H. I. Krebs, J. Charnnarong, P. Srikrishna and A. Sharon. MIT-MANUS: a workstation for manual therapy and training.I[C]//Proceedings IEEE International Workshop on Robot and Human Communication. Tokyo, Japan: IEEE, 1992: 161-165.
[18] 徐振邦, 赵智远, 贺帅, 等. 机器人工作空间求解的蒙特卡洛法改进和体积求取[J]. 光学精密工程, 2018, 26(11): 2703-2713.
XU Zhen-bang, ZHAO Zhi-yuan, HE Shuai, et al. Improvement of Monte Carlo method for robot workspace solution and volume calculation[J]. Optics and Precision Engineering, 2018, 26(11): 2703-2713.
[19] Chand T. An algorithm for generating muscle-actuated simulations of long-duration movements[R]. Stanford: StanfordUniversity, 2006.
[20] Thelen D G, Anderson F C, Delp S L. Generating dynamic simulations of movement using computed muscle control[J]. Journal of Biomechanics, 2003, 36(3): 321-328.
[21] Saul KR, Hu X, Goehler CM, Vidt ME, Daly M, Velisar A, Murray WM. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model[J]. Comput Methods Biomech Biomed Engin, 2015, 18(13): 1445-1458.
[22] McFarland DC, McCain EM, Poppo MN, Saul KR. Spatial Dependency of Glenohumeral Joint Stability During Dynamic Unimanual and Bimanual Pushing and Pulling[J]. J Biomech Eng, 2019, 141(5): 199-205.
[23] 姚恒文. 上肢康复外骨骼机器人设计与柔顺轨迹规划[D]. 大连理工大学, 2024.
YAO Hengwen. Design and Flexibility Trajectory Planning of Upper Limb Rehabilitation Exoskeleton Robot[D]. Dalian University of Technology, 2024.
[24] 严浩. 具有广义肩关节的上肢康复机器人机构设计分析及人机协同控制研究[D]. 燕山大学, 2021.
YAN Hao. Research on Mechanism Design Analysis and Man-Machine Cooperative Control of Upper Limb Rehabilitation Robot with Generalized Shoulder Joint[D]. Yanshan University, 2021.
[25] 李辽远, 韩建海, 李向攀, 等. 上肢康复机器人关键技术研究进展[J]. 机械设计与研究, 2021, 37(06): 28-34.
LI Liaoyuan, HAN Jianhai, Li Xiangpan, et al. A State-of-the-Art Review on Upper Limb Rehabilitation Robots[J]. Machine Design & Research, 2021, 37(06): 28-34.
[26] 李翌, 于随然. 面向脑卒中恢复期患者的上肢外骨骼主动式力量训练器的设计[J]. 机械设计与研究, 2019, 35(4): 5-10.
Li Yi, YU Suiran. Design of An Active Force Trainer for Upper Limb Exoskeleton for Stoke Convalescent People[J]. Machine Design & Research, 2019, 35(4): 5-10.
[27] 梁文婧, 张宏海, 张蕾蕾, 等. 基于MVVM模式的中国科技云门户管理系统的设计与实现[J]. 数据与计算发展前沿, 2022, 4(02): 99-108.
LIANG Wenjing, ZHANG Honghai, ZHANG Leilei, et al. Design and Implementation of CSTCloud Portal Management System Based on MVVM[J]. Frontiers of Data & Computing, 2022, 4(02): 99-108.
[28] Hassanzadeh Khanmiri,S.,Sayyed Noorani,M. OpenSim/ MATLAB interface to musculoskeletal-based simulations for control of a motion assistive exoskeleton robot in elbow flexion/extension[J]. Iranian Journal of Biomedical Engineering, 2024, 18(3): 233-244.
[29] Hammond, C.V., Williams, S.T., Vega, M.M. et al. The Neuromusculoskeletal Modeling Pipeline:MATLAB-based model personalization and treatment optimization functionality for OpenSim[J]. J NeuroEngineering Rehabil, 2025, 22(1):112-139.
[30] Nicolas Hankov et al. Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept[J]. Science Robotics, 2025, 10(100): 166-198.
|