作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (9): 110-111,114. doi: 10.3969/j.issn.1000-3428.2011.09.037

• 软件技术与数据库 • 上一篇    下一篇

基于构件行为聚类的软件工程知识分类

万年红1,谭文安2,王雪蓉1   

  1. (1. 浙江东方职业技术学院工程技术系,浙江 温州 325011;2. 上海第二工业大学计算机与信息学院,上海 201209)
  • 出版日期:2011-05-05 发布日期:2011-05-12
  • 作者简介:万年红(1977-),男,讲师、硕士,主研方向:知识管理,网络信息化工程;谭文安,教授、博士、博士生导师;王雪蓉,讲师、硕士
  • 基金资助:
    国家自然科学基金资助项目(60874120)

Software Engineering Knowledge Classification Based on Component Behavior Clustering

WAN Nian-hong  1, TAN Wen-an  2, WANG Xue-rong  1   

  1. (1. Dept. of Engineering Technology, Zhejiang Dongfang Vocational and Technical College, Wenzhou 325011, China; 2. School of Computer and Information, Shanghai Second Polytechnic University, Shanghai 201209, China)
  • Online:2011-05-05 Published:2011-05-12

摘要: 针对传统软件工程知识分类方法效率低下的问题,提出一种改进的软件工程知识分类方法。依据软件工程知识体系(SWEBOK)对构件行为进行聚类,确定关联系数、最佳聚类数和模糊关联矩阵,基于K-NN算法和结构建模方法生成软件知识分类系统,并根据训练先验知识将新知识归入到SWEBOK的对应类别下。实验结果表明,该方法具有较好的分类效果。

关键词: 软件工程知识体系, 接口自动机, 构件行为聚类, 聚类构造器

Abstract: Aiming at the problems that traditional means towards software engineering knowledge classification is inefficient, this paper presents an improved software engineering knowledge classification method. Regarding the architecture of Software Engineering Body Of Knowledge(SWEBOK), it goes on clustering for component behavior, determines the behavior correlation coefficient, the best clustering numbers, fuzzy correlation matrix, applies K-NN Algorithm and structure modeling method to generate a knowledge classification system. It can train the system with experience knowledge to classify new knowledge into corresponding SWEBOK categories. Experimental results show that the method has good classification efficiency.

Key words: Software Engineering Body Of Knowledge(SWEBOK), Interface Automata(IA), component behavior clustering, clustering constructor

中图分类号: