[1] 刘青山, 卢汉清. 综述人脸识别中的子空间方法[J]. 自动化学报, 2003, 29(6): 900-911. [2] Turk M P. A Eigenfaces for Recognition[J]. Journal Cognitive Neuroscience, 1991, 3(1): 71-86. [3] Martinez A M, Kak A C. PCA Versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233. [4] Luo Siwei, Zhao Lianwei. Manifold Learning Algorithm Based on Spectral Graph Theory[J]. Computer Research and Development, 2006, 43(7): 1173-1179. [5] Tenenbaum J B, Silva D V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science, 2000, 290(5500): 2319-2323. [6] Belkin M, Niyogi P. Laplacian Eigenmaps for Di- mensionality Reduction and Data Representation[J]. Neural Computation, 2003, 15(6): 1373-1396. [7] Roweis S T, Saul L K. Nonlinear Dimensionality Re- duction by Locally Linear Embedding[J]. Science, 2000, 290(5500): 2323-2326. [8] Bengio Y, Palement J, Vincent P, et al. Out-of-sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering[J]. Neural Computation, 2004, 16(10): 2179-2219. [9] Yang Jian, Zhang D, Yang Jingyu, et al. Globally Max- imizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 650-664. [10] He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340. [11] Sugiyama M. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis[J]. Journal of Machine Learning Research, 2007, 8(1): 1027-1061. [12] Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51. [13] 谢 钧, 刘 剑. 一种新的局部判别投影方法[J]. 计算机学报, 2011, 34(11): 2243-2249. [14] 詹宇斌, 殷建平, 刘新旺, 等. 流形学习中基于局部线性结构的自适应邻域选择[J]. 计算机研究与发展, 2011, 48(4): 576-583. 编辑 刘 冰
|