[1] Seung H S,Lee D D.The Manifold Ways of Perception[J].Science,2000,290(5500):2268-2269.
[2] 杨 剑,李伏欣,王 珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590.
[3] Tenenbaum J B,de Silva V,Langford J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science,2000,290(5500):2319-2323.
[4] 王耀南,张 莹,李春生.基于核矩阵的Isomap增量学习算法研究[J].计算机研究与发展,2009,46(9):1515-1522.
[5] Roweis S T,Saul L K.Nonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science,2000,290(5500):2323-2326.
[6] Zhang S.Enhanced Supervised Locally Linear Embedding[J].Pattern Recognition Letters,2009,30(13):1208-1218.
[7] Balasubramanian M,Shwartz E L,Tenenbaum J B,et al.The ISOMAP Algorithm and Topological Stability[J].Science,2002,295(5552):7-17.
[8] Saul L K,Roweis S T.Think Globally,Fit Locally:Unsupervised Learning of Low Dimensional Manifolds[J].Journal of Machine Learning Research,2003,4(1):119-155.
[9] 詹德川,周志华.基于集成的流形学习可视化[J].计算机研究与发展,2005,42(9):1533-1537.
[10] 邵 超,黄厚宽,赵连伟.一种更具拓扑稳定性的ISOMAP算法[J].软件学报,2007,18(4):869-877.
[11] Kouropteva O,Okun O,Pietikainen M.Selection of the Optimal Parameter Value for the Locally Linear Embedding Algorithm[C]//Proc.of the 1st International Conference on Fuzzy Systems and Knowledge Discovery,Orchid Country Club.Singapore:IEEE Press,2002:359-363.
[12] Samko O,Marshall A D,Rosin P L.Selection of the Optimal Parameter Value for the Isomap Algorithm[J].Pattern Recognition Letters,2006,27(1):968-979.
[13] 黄启宏,刘 钊.流形学习中非线性维数约简方法概述[J].计算机应用研究,2007,24(11):19-25.
[14] 〖JP3〗Saxena A,Gupta A,Mukerjee A.Non-linear Dimensionality Reduction by Locally Linear Isomaps[C]//Proc.of the 11th International Conference on Neural Information Processing.Calcutta,India:Springer,2004:1038-1043.
[15] Wen G,Jiang L,Shadbolt N R.Using Graph Algebra to Optimize Neighborhood for Isometric Mapping[C]//Proc.of the 20th International Joint Conference on Artificial Intelligence.Hyderabad,India:AAAI Press,2007,2398-2403.
[16] Carreira-Perpinan M A,Zemel R S.Proximity Graphs for Clustering and Manifold Learning[C]//Proc.of the 18th Annual Conference on Neural Information Processing Systems.Vancouver,Canada:MIT Press,2004:225-232.
[17] Yang L.Building k Edge-disjoint Spanning Trees of Minimum Total Length for Isometric Data Embedding[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1680-1683.
[18] Zhang Z,Wang J,Zha H.Adaptive Manifold Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(2):1473-1480.
[19] 文贵华,江丽君,文 军.邻域参数动态变化的局部线性嵌入[J].软件学报,2008,19(7):1666-1673.
[20] 邵 超,张 斌,万春红.流形学习中邻域大小参数的合适性判定[J].计算机工程与应用,2010,46(20):172-175.
[21] Chang H,Yeung D.Robust Locally Linear Embedding[J].Pattern Recognition,2006,39(6):1053-1065.
[22] 〖JP3〗Pelleg D,Moore A.X-means:Extending K-means With Efficient Estimation of the Number of Clusters[C]//Proc.of the 17th International Conference on Machine Learning.San Francisco,USA:Morgan Kaufmann Publishers,2000:727-734.
编辑 索书志 |