作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2019, Vol. 45 ›› Issue (5): 279-284. doi: 10.19678/j.issn.1000-3428.0050549

• 开发研究与工程应用 • 上一篇    下一篇

基于分层Q学习的联合抗干扰算法

韩晨1,牛英滔2   

  1. 1.陆军工程大学 通信工程学院,南京 210000; 2.南京电讯技术研究所,南京 210008
  • 收稿日期:2018-02-28 出版日期:2019-05-15 发布日期:2019-05-15
  • 作者简介:韩晨(1993—),男,硕士研究生,主研方向为认知无线电、通信抗干扰技术、人工智能;牛英滔,高级工程师、博士。
  • 基金资助:

    江苏省自然科学基金(BK20151450)。

Joint anti-jamming algorithm based on hierarchical Q learning

HAN Chen1,NIU Yingtao2   

  1. 1.College of Communications Engineering,Army Engineering University,Nanjing 210000,China; 2.Nanjing Telecommunication Technology Institute,Nanjing 210008,China
  • Received:2018-02-28 Online:2019-05-15 Published:2019-05-15

摘要:

针对智能干扰威胁下的跨层抗干扰通信问题,提出一种基于分层Q学习的联合抗干扰学习算法。根据用户与干扰机之间的路由信道选择问题构建分层Stackelberg博弈模型,干扰机选择最佳干扰信道实施干扰,用户与干扰机进行路由信道博弈,选择最佳路由及信道实现通信。仿真结果表明,与固定路由-随机信道选择算法、随机路由-最佳信道选择算法和随机路由-随机信道选择算法相比,该算法具有更好的抗干扰性能。

关键词: 通信抗干扰, Stackelberg博弈, 信道分配, 路由选择, Q学习, 跨层设计

Abstract:

Aiming at the cross-layer anti-jamming communication problem under the threat of intelligent interference,a joint anti-jamming learning algorithm based on hierarchical Q learning is proposed.The problem of routing selection and channel allocation between users and intelligent jammer is modeled as a hierarchical Stackelberg game.In the routing-chanel game between users and jammers,the intelligent jammer chooses the best channel for jamming,while users select the best route and channels for communication.Simulation results show that compared with the Fixed-routing-random-channel Selection Algorithm(FRSA),Random-routing-optimal-channel Selection Algorithm(ROSA) and Random-routing-random-channel Selection Algorithm(RRSA),the proposed algorithm has better anti-jamming capacity.

Key words: communication anti-jamming, Stackelberg game, channel allocation, routing selection, Q learning, cross-layer design

中图分类号: