«上一篇 下一篇»
  计算机工程  2020, Vol. 46 Issue (10): 301-307, 314  DOI: 10.19678/j.issn.1000-3428.0055040
0

引用本文  

朱明健, 樊渊, 张成笑. 基于状态观测器的动态事件触发机制[J]. 计算机工程, 2020, 46(10), 301-307, 314. DOI: 10.19678/j.issn.1000-3428.0055040.
ZHU Mingjian, FAN Yuan, ZHANG Chengxiao. Dynamic Event Triggering Mechanism Based on State Observer[J]. Computer Engineering, 2020, 46(10), 301-307, 314. DOI: 10.19678/j.issn.1000-3428.0055040.

基金项目

国家自然科学基金(61573021)

通信作者

樊渊(通信作者), 教授

作者简介

朱明健(1997-), 男, 硕士研究生, 主研方向为事件触发控制、优化控制;
张成笑, 硕士研究生

文章历史

收稿日期:2019-05-27
修回日期:2019-09-03
基于状态观测器的动态事件触发机制
朱明健 , 樊渊 , 张成笑     
安徽大学 电气工程与自动化学院, 合肥 230601
摘要:针对内部状态不可测的线性系统,在状态观测器输出反馈的基础上,提出一种动态事件触发机制。采用状态观测器来估计内部状态并设计事件触发机制,利用李雅普诺夫控制理论得到使系统渐近稳定的2个线性矩阵不等式(LMIs),并在求解LMIs的基础上设计控制器中的参数和事件触发条件,同时,通过引入内部动态变量提出一种动态事件触发机制。实验结果表明,该动态事件机制可以避免存在Zeno行为,并通过仿真示例说明理论的正确性和有效性。
关键词线性系统    事件触发机制    状态观测器    动态触发    渐近稳定    
Dynamic Event Triggering Mechanism Based on State Observer
ZHU Mingjian , FAN Yuan , ZHANG Chengxiao     
School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China
Abstract: This paper proposes a dynamic Event Triggering Mechanism(ETM) based on the output feedback of the state observer for linear systems whose internal state is unpredictable.The method uses a state observer to estimate the internal state and designs an event triggering mechanism.Then Lyapunov theory is used to obtain two Linear Matrix Inequalities(LMIs) that make the system asymptotically stable, and based on the solution to LMIs the parameters and event triggering conditions of the controller are designed.At the same time, a dynamic event triggering mechanism is proposed by introducing internal dynamic variables.Experimental results show that this dynamic event triggering mechanism can avoid the existence of Zeno behavior, and the correctness and validity of the theory are illustrated by simulation examples.
Key words: linear system    Event Triggering Mechanism(ETM)    state observer    dynamic triggering    asymptotically stable    
0 概述

在传统的时间采样控制系统中, 系统状态采样和控制器的更新通常是周期性进行的。当计算和通信资源需要分配给其任务时, 这种时间触发的方式可能使系统处于高工作负载状态。为了节省系统资源, 可以采用非周期性的触发方法。近年来, 人们越来越关注事件触发的反馈控制系统。文献[1-3]描述了关于事件触发机制的一些基本概念。事件触发机制是时间触发机制的替代方案, 在事件触发的方案中, 一旦检测到系统状态偏差不满足给定的事件触发条件, 就会触发控制任务[4-5]。与时间触发机制中的周期状态采样方式不同, 事件触发中的状态采样是非周期性的。因此, 设计控制器使得其仅在必要时使用计算和通信资源, 可以减少对系统资源的占用, 同时保持良好的稳定性能。研究结果表明, 事件触发机制相较于时间触发机制具有更优的资源节省性能。目前, 多数研究致力于开发设计事件触发机制(ETM)的系统技术, 用于实现给定反馈控制器的系统稳定[6], 最常用的ETM通常由给定系统状态的等式或不等式组成。事件触发机制多采用文献[7-8]中的多智能体系统, 也常见于多智能体系统的自触发方案设计[9-10]

文献[11]研究了基于观测器的事件触发控制的闭环系统。类似于事件触发的输出反馈控制系统的情况[12], 该系统的输出仅在满足事件触发条件时传输给观测器。通过满足给定的线性矩阵不等式(LMIs)条件和事件触发条件, 可以使反馈控制系统和观测器系统是渐近稳定的。文献[13-14]研究了在某些不确定系统中基于观测器的事件触发状态反馈机制, 通过求解LMIs可以证明系统的稳定性。

通过在事件触发机制中引入一个内部动态变量, 可以得到动态ETM。已有研究学者对ETM中的内部动态变量进行了研究[15-17]。文献[18-19]中的动态触发机制也引入了内部动态变量, 且提出的机制已经获得了相应的理论成果。与ETM相比, 动态ETM可以降低收敛速度和触发次数, 从而改进ETM的性能。事实证明, 对于大部分事件触发控制器而言, 动态ETM的最小触发间隔大于ETM[20]

对于多数事件触发机制研究来说, 系统状态都是已知的。本文针对状态不可测线性系统, 提出一种基于状态观测器输出反馈的动态ETM, 状态观测器利用输出的事件触发信号来估计系统状态。事件触发的控制系统可能会存在Zeno行为, Zeno行为意味着在有限的时间段内存在无数次的触发, 这对于实际物理系统是不允许的。因此, 在实验中给出事件触发控制的最小触发时间间隔, 以排除Zeno行为。

1 基础知识

函数β:R0+R0+是连续的严格递增的函数且β(0)=0, 则称之为K函数。若存在r→+∞时, β(r)→+∞, 则将β称为K函数。其中, R0+表示非负实数集合。

函数f:RnRm使得对于任意的x, yQRn, 存在一个常数矩阵M>0且满足式(1)时, 则称该函数是Lipschitz连续的。

$ \left\| {f(x) - f(y)} \right\| \le \mathit{\boldsymbol{M}}\left\| {x - y} \right\| $ (1)

其中, Rn表示n维欧式空间, Rm×n表示所有的m×n维实矩阵的集合。

引理1 [21]  若XY是实正定矩阵, 则以下不等式成立:

$ {\mathit{\boldsymbol{X}}^{\rm{T}}}\mathit{\boldsymbol{Y}} + {\mathit{\boldsymbol{Y}}^{\rm{T}}}\mathit{\boldsymbol{X}} \le {\mathit{\boldsymbol{X}}^{\rm{T}}}\mathit{\boldsymbol{X}} + {\mathit{\boldsymbol{Y}}^{\rm{T}}}\mathit{\boldsymbol{Y}} $ (2)

引理2 [22] 对于一个对称矩阵SRn×n, 存在$\mathit{\boldsymbol{S}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{S}}_{11}}}&{{\mathit{\boldsymbol{S}}_{12}}}\\ {{\mathit{\boldsymbol{S}}_{21}}}&{{\mathit{\boldsymbol{S}}_{22}}} \end{array}} \right]$, 其中, S11Rr×r, S12Rr×(nr), S21R(nrr, S22R(nr)×(nr)。当S11 < 0, S22S12TS11-1S12 < 0或者S22 < 0, S11S12S22-1S12T < 0时, 存在S < 0。

2 基于观测器事件触发机制

系统状态空间表达式为:

$ \left\{ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{\dot x}}(t) = \mathit{\boldsymbol{Ax}}(t) + \mathit{\boldsymbol{Bu}}(t)}\\ {\mathit{\boldsymbol{y}}(t) = \mathit{\boldsymbol{Cx}}(t)}\\ {\mathit{\boldsymbol{x}}(0) = {\mathit{\boldsymbol{x}}_0}} \end{array}} \right. $ (3)

其中, xRn为系统的状态向量, 初始状态定义为x(0)=x0, uRm为系统的输入向量, yRq为输出向量。ARn×n, B∈Rn×mCRq×n均为已知常数矩阵。全维状态观测器为:

$ \left\{ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{\dot {\hat x}}} = \mathit{\boldsymbol{A\dot x}}(t) + \mathit{\boldsymbol{Bu}}(t) + \mathit{\boldsymbol{L}}(\mathit{\boldsymbol{y}}(t) - \mathit{\boldsymbol{\hat y}}(t))}\\ {\mathit{\boldsymbol{\hat y}}(t) = \mathit{\boldsymbol{C\hat x}}(t)} \end{array}} \right. $ (4)

其中, $\mathit{\boldsymbol{\hat x}} \in {\mathit{\boldsymbol{R}}^n}$是观测器状态向量, $\mathit{\boldsymbol{\hat y}} \in {\mathit{\boldsymbol{R}}^q}$是观测器输出向量, LRn×q是观测器增益矩阵。假设{A, B}是完全可控的以及{A, C}是完全可观的。

基于观测器的反馈控制器$\mathit{\boldsymbol{u}}(t) = \mathit{\boldsymbol{K}}\mathit{\boldsymbol{\widehat x}}(t), \mathit{\boldsymbol{K}}$是反馈增益矩阵。定义观测器状态误差为$\mathit{\boldsymbol{\tilde x}}\left( t \right) = \mathit{\boldsymbol{x}}(t) - \mathit{\boldsymbol{\hat x}}(t)$, 可以得到观测误差的动态方程为$\mathit{\boldsymbol{\dot {\tilde x}}}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})\mathit{\boldsymbol{\tilde x}}(t)$

2.1 事件触发机制

实验将引入事件触发机制改善系统的性能。假设系统式(3)的输出信号仅在tk, kZ0+时刻更新, 输出信号即可表示为:y(t)=y(tk), t∈[tk, tk+1), 重新得到观测器的表达式为: $\mathit{\boldsymbol{\dot {\hat x}}}(t) = \mathit{\boldsymbol{A}}\mathit{\boldsymbol{\widehat x}}(t) + \mathit{\boldsymbol{Bx}}(t) + \mathit{\boldsymbol{L}}\left( {\mathit{\boldsymbol{y}}\left( {{t_k}} \right) - \mathit{\boldsymbol{\widehat y}}(t)} \right)$

定义输出误差为:

$ {\mathit{\boldsymbol{e}}_y}(t) = \mathit{\boldsymbol{y}}({t_k}) - \mathit{\boldsymbol{y}}(t),t \in [{t_k},{t_{k + 1}}) $ (5)

因此, 可以描述系统状态和观测器状态误差为:

$ \left\{ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{\dot x}}(t) = (\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})\mathit{\boldsymbol{x}}(t) - \mathit{\boldsymbol{B\tilde Kx}}(t)}\\ {\mathit{\boldsymbol{\dot {\tilde x}}}(t) = (\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})\mathit{\boldsymbol{\tilde x}}(t) - \mathit{\boldsymbol{L}}{\mathit{\boldsymbol{e}}_y}(t)} \end{array}} \right. $ (6)

事件触发机制系统结构如图 1所示。

Download:
图 1 基于观测器的事件触发机制系统结构 Fig. 1 Event triggering mechanism system structure based on observer

定义事件触发条件为:

$ \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t) < \sigma {\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{y}}(t),\sigma \in [0,1) $ (7)

其中, σ为给定的常数。当不满足式(7)时, 对系统输出信号进行更新。

定理1  在系统式(6)中, 如果存在2个正定矩阵P1, P2Rn×n, 以及正数σ∈[0, 1)满足以下2个矩阵不等式(8)与式(9):

$ \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{P}}_1}(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}}) + {{(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1} + \sigma {\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{C}}}&{{\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{BK}}}\\ {{\mathit{\boldsymbol{K}}^{\rm{T}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1}}&{ - {\mathit{\boldsymbol{I}}_{\rm{n}}}} \end{array}} \right] < 0 $ (8)
$ \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{P}}_2}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}}) + {{(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + {\mathit{\boldsymbol{I}}_n}}&{{\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{L}}}\\ {{\mathit{\boldsymbol{L}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2}}&{ - {\mathit{\boldsymbol{I}}_q}} \end{array}} \right] < 0 $ (9)

则系统式(6)是渐近稳定的, 且有$\mathop {\lim }\limits_{t \to \infty } x(t) = 0, \mathop {\lim }\limits_{t \to \infty } \tilde x(t) = 0$

证明  构造Lyapunov函数为:

$ V(\mathit{\boldsymbol{x}}(t),\mathit{\boldsymbol{\tilde x}}(t)) = {\mathit{\boldsymbol{x}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{x}}(t) + {\mathit{\boldsymbol{\tilde x}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{\tilde x}}(t) $

其中, P1, P2分别为矩阵不等式(8)和式(9)的解, 对Lyapunov函数关于时间求导可以得到:

$ \begin{array}{l} \begin{array}{*{20}{l}} {\mathit{\boldsymbol{\dot V}} = {{\mathit{\boldsymbol{\dot x}}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{x}}(t) + {\mathit{\boldsymbol{x}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{\dot x}}(t) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\mathit{\boldsymbol{\dot {\tilde x}}}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{\tilde x}}(t) + {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{\dot {\tilde x}}}(t) = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{((\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})\mathit{\boldsymbol{x}}(t) - \mathit{\boldsymbol{B\tilde Kx}}(t))}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{x}}(t) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{x}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_1}((\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})\mathit{\boldsymbol{x}}(t) - \mathit{\boldsymbol{B\tilde Kx}}(t)) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ((\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})\mathit{\boldsymbol{\tilde x}}(t) - \mathit{\boldsymbol{L}}{\mathit{\boldsymbol{e}}_y}(t)){\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{\tilde x}}(t) + } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {{{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_2}((\mathit{\boldsymbol{L}} - \mathit{\boldsymbol{LC}})\mathit{\boldsymbol{\tilde x}}(t) - \mathit{\boldsymbol{L}}{\mathit{\boldsymbol{e}}_y}(t)) = }\\ {{\mathit{\boldsymbol{x}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_1}(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}}) + {{(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1})\mathit{\boldsymbol{x}}(t) + }\\ {{{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_2}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}}) + {{(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2})\mathit{\boldsymbol{\tilde x}}(t) - }\\ {2{\mathit{\boldsymbol{x}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{B\tilde Kx}}(t) - 2\mathit{\boldsymbol{\tilde x}}(t){\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{L}}{\mathit{\boldsymbol{e}}_y}(t) \le } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {{\mathit{\boldsymbol{x}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_1}(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}}) + {{(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1})\mathit{\boldsymbol{x}}(t) + }\\ {{{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_2}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}}) + {{(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2})\mathit{\boldsymbol{\tilde x}}(t) + }\\ {{\mathit{\boldsymbol{x}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{BK}}{\mathit{\boldsymbol{K}}^{\rm{T}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{x}}(t) + {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)\mathit{\boldsymbol{\tilde x}}(t) + }\\ {{{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t){\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{L}}{\mathit{\boldsymbol{L}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{\tilde x}}(t) + \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t)} \end{array} \end{array} $ (10)

由事件触发机制可知, 若式(7)不满足, 则会有第k+1次更新执行。因此, 通过计算可以得到:

$ \begin{array}{*{20}{l}} {\dot V \le {\mathit{\boldsymbol{x}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_1}(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}}) + {{(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{BK}}{\mathit{\boldsymbol{K}}^{\rm{T}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1} + \sigma {\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{C}})\mathit{\boldsymbol{x}}(t) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_2}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}}) + {{(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})}^{\rm{T}}}\mathit{\boldsymbol{P}} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{L}}{\mathit{\boldsymbol{L}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + \mathit{\boldsymbol{I}})\mathit{\boldsymbol{\tilde x}}(t)} \end{array} $ (11)

由引理1可知, 不等式(8)、不等式(9)分别与以下不等式(12)、不等式(13)等价:

$ \begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_1}(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}}) + {{(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1} + }\\ {{\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{BK}}{\mathit{\boldsymbol{K}}^{\rm{T}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1} + \sigma {\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{C}} < 0} \end{array} $ (12)
$ \begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_2}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}}) + {{(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + }\\ {{\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{L}}{\mathit{\boldsymbol{L}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + \mathit{\boldsymbol{I}} < 0} \end{array} $ (13)

因此, 可以证明$\dot V(\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{\tilde x}}) < 0$, 即系统式(6)是渐近稳定的。

备注1  通过求解线性矩阵不等式(8)和不等式(9), 可以得到参数σ以及P1P2的值。这些参数值在事件触发条件式(7)下可以保证系统状态和观测器误差状态的渐近稳定性。此外, 这2个线性矩阵不等式互相独立。事件触发策略的设计仅仅与控制器增益矩阵K有关, 而与观测器本身无关, 这显示了事件触发方案的设计与观测器之间的分离原则。

令2个对称正定矩阵M, NRn×n满足以下等式:

$ \begin{array}{*{20}{l}} {\mathit{\boldsymbol{M}} = - ({\mathit{\boldsymbol{P}}_1}(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}}) + {{(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{BK}}{\mathit{\boldsymbol{K}}^{\rm{T}}}{\mathit{\boldsymbol{B}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1})} \end{array} $ (14)
$ \begin{array}{l} \mathit{\boldsymbol{N}} = - ({\mathit{\boldsymbol{P}}_2}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}}) + {(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{L}}{\mathit{\boldsymbol{L}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + \mathit{\boldsymbol{I}}) \end{array} $ (15)

可以得到:

$ \begin{array}{l} \begin{array}{*{20}{l}} {\dot V \le {\mathit{\boldsymbol{x}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_1}(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}}) + {{(\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{P}}_1}\mathit{\boldsymbol{BK}}{\mathit{\boldsymbol{K}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_1})\mathit{\boldsymbol{x}}(t) + \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)({\mathit{\boldsymbol{P}}_2}(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}}) + {{(\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{LC}})}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{P}}_2}\mathit{\boldsymbol{L}}{\mathit{\boldsymbol{L}}^{\rm{T}}}{\mathit{\boldsymbol{P}}_2} + \mathit{\boldsymbol{I}})\mathit{\boldsymbol{\tilde x}}(t) = } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} { - {\mathit{\boldsymbol{x}}^{\rm{T}}}(t)\mathit{\boldsymbol{Mx}}(t) + \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t) - {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)\mathit{\boldsymbol{N\tilde x}}(t) = }\\ {{\mathit{\boldsymbol{x}}^{\rm{T}}}(t)(\sigma {\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{C}} - \mathit{\boldsymbol{M}})\mathit{\boldsymbol{x}}(t) - {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)\mathit{\boldsymbol{Nx}}(t)} \end{array} \end{array} $ (16)

事件触发时刻有以下不等式eyT(t)ey(t)≥σyT(t)y(t), 则ETM的时间序列{tk}k∈Z0+可以定义为:

$ {t_{k + 1}} = {\rm{arg}}\mathop {{\rm{min}}}\limits_{t > {t_k}} \left\{ {\begin{array}{*{20}{l}} {t|\sigma {\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{y}}(t)}\\ { - \mathit{\boldsymbol{e}}_t^{\rm{T}}({t^ - }){\mathit{\boldsymbol{e}}_y}({t^ - }) \le 0} \end{array}} \right\} $ (17)

该事件触发机制意味着σyT(t)y(t)-eyT(t)ey(t)的值始终是非负的, 因此有$\frac{{{\rm{d}}V(\mathit{\boldsymbol{x}}(t), \mathit{\boldsymbol{\widetilde x}}(t))}}{{{\rm{d}}t}} < 0$, 保证了x(t)和${\mathit{\boldsymbol{\widetilde x}}(t)}$t→∞时渐近收敛。

事件触发策略式(17)仅受x${\mathit{\boldsymbol{\widetilde x}}}$ey当前值的影响。下文中提出了动态ETM, 引用一个额外的内部动态变量。动态ETM不仅与当前时刻状态有关, 而且还受之前状态的影响。

2.2 动态事件触发机制

通过使用动态ETM, 系统可以进一步减少触发次数, 从而可以实现更好的资源节省性能。基于满足以下微分方程的内部动态变量η引入动态ETM:

$ \begin{array}{*{20}{l}} {\dot \eta (t) = - \beta (\eta (t)) + \sigma {\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{y}}(t) - \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t)}\\ {\eta (0) = {\eta _0}} \end{array} $ (18)

其中, βK类函数, 并且满足Lipschitz连续性。σ>0和η0R0+是已知参数。根据β可以是线性或非线性的, 系统式(3)可以保持稳定性, 并且不需要必须保持σyTyeyTey非负。这可以通过事件触发这样的方式来确保, 即η始终保持非负值。则动态ETM由以下规则定义:

$ {t_{k + 1}} = {\rm{arg}}\mathop {{\rm{min}}}\limits_{t > {t_k}} \left\{ {\begin{array}{*{20}{l}} {t|\eta (t) + \theta [\sigma {\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{y}}(t)}\\ { - \mathit{\boldsymbol{e}}_y^{\rm{T}}({t^ - }){\mathit{\boldsymbol{e}}_y}({t^ - })] \le 0} \end{array}} \right\} $ (19)

其中, θR0+是一个额外设计的参数, 其中事件触发机制式(17)可以视为动态事件触发机制在θ→+∞时的特殊情况。

引理3  假设βK函数且满足Lipschitz连续性, 令σ∈[0, 1), η, θR0+。假设xeyη分别由式(3)、式(5)、式(18)定义, 那么对任意的t∈[0, ∞)时, 存在:

$ {\eta (t) + \theta (\sigma {\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{y}}(t) - \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t)) \ge 0} $ (20)
$ {\eta (t) \ge 0} $ (21)

证明  动态触发条件式(19)确保了对任意的t∈[0, ∞)均有:η(t)+θ(σyT(t)y(t)-eyT(t)ey(t))≥0。

由于ey(t)是连续的且对任意的t∈[0, ∞)都满足eyT(t)ey(t)≤eyT(t)ey(t), 因此不等式(20)得证。如果θ∈0, 不等式(21)则是不等式(20)的一个特例, 因此存在η(t)≥0。若θ≠0, 通过不等式(20)可以得到:

$ \sigma {\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{y}}(t) - \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t) \ge - \frac{1}{\theta }\eta (t) $ (22)

通过式(18)可以得到:

$ \dot \eta (t) \ge - \beta (\eta (t)) - \frac{1}{\theta }\eta (t),\eta (0) \ge 0 $ (23)

通过比较和分析可知, 对任意的t∈[0, ∞)都满足η(t)≥0, 因此, η在任意时刻都保证是非负的。

定理2  对任意的σ∈[0, 1), η, θR0+, 在动态事件触发条件式(19)下, x(t)、$ {\mathit{\boldsymbol{\widetilde x}}(t)}$η(t)渐近收敛。

证明  定义Lyapunov函数W:Rn×R0+R0+来证明系统的稳定性, 令:

$ W(\mathit{\boldsymbol{x}},\mathit{\boldsymbol{\tilde x}},\eta ) = V(\mathit{\boldsymbol{x}},\mathit{\boldsymbol{\tilde x}}) + \eta $ (24)

显然, W是正的并且径向无界, 且对任意的$(\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{\tilde x}}, \eta ) \in {\mathit{\boldsymbol{R}}^n} \times \mathit{\boldsymbol{R}}_0^ + $均有$W(\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{\tilde x}}, \eta ) > V(\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{\tilde x}})$成立。同样, 根据不等式(16)与不等式(18), $W(\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{\tilde x}}, \eta )$关于时间的导数满足:

$ \begin{array}{*{20}{l}} {\dot W = \dot V(\mathit{\boldsymbol{x}}(t),\mathit{\boldsymbol{\tilde x}}(t)) + \dot \eta (t) \le }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\mathit{\boldsymbol{x}}^{\rm{T}}}(t)\mathit{\boldsymbol{Mx}}(t) + \mathit{\boldsymbol{e}}_y^{\rm{T}}(t){\mathit{\boldsymbol{e}}_y}(t) - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)\mathit{\boldsymbol{N\tilde x}}(t) + \dot \eta (t) = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\mathit{\boldsymbol{x}}^{\rm{T}}}(t)\mathit{\boldsymbol{Mx}}(t) - {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)\mathit{\boldsymbol{N\tilde x}}(t) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sigma {\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{y}}(t) - \beta (\eta (t)) = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{x}}^{\rm{T}}}(t)(\sigma {\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{C}} - \mathit{\boldsymbol{M}})\mathit{\boldsymbol{x}}(t) - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\mathit{\boldsymbol{\tilde x}}}^{\rm{T}}}(t)\mathit{\boldsymbol{N\tilde x}}(t) - \beta (\eta (t))} \end{array} $ (25)

由于βK函数且满足Lipschitz连续性, 同时有$\sigma > 0, \frac{{{\rm{d}}W(\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{\widetilde x}}, \eta )}}{{{\rm{d}}t}} \le 0$

W是衰减的, 当t→+∞时, x(t)、${\mathit{\boldsymbol{\widetilde x}}}$η(t)渐近收敛于原点。

备注2  提出的动态ETM有几个设计参数, η, σ∈(0, 1)以及θR0+。这些参数主要影响触发间隔的下界和系统状态的收敛速度, 实验需要提供一些论证来指导选择参数值。首先, 触发间隔的下界是θ的连续函数。实际上, ETM可以被视为动态ETM的极限情况, 其中θ→+∞。其次, 闭环系统式(6)的收敛与σ直接相关, 通过适当选择参数σ可以调节衰减率, 也可以通过改变σ值来控制事件触发的次数。通过调整σθ, 可以接近理想闭环系统式(6)的性能。最后, 尽量选择合适的σθ, 以减少对性能指标的影响。

2.3 Zeno行为分析

事件触发机制中的一个重要问题为是否存在最小的触发间隔τ>0, 对任意的时间序列{tk}kZ0+都满足tk+1tkτ, ∀kZ0+。下文将提出一种动态触发机制的方法来排除Zeno行为。

事件触发条件式(7)等价于$\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\| < \sqrt \sigma \left\| {\mathit{\boldsymbol{y}}(t)} \right\|$, 由于y=Cx, 因此有$\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\| < \sqrt \sigma \left\| \mathit{\boldsymbol{C}} \right\|\left\| {\mathit{\boldsymbol{x}}(t)} \right\|$, 同时$\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\| < \sqrt \sigma \left\| \mathit{\boldsymbol{C}} \right\|\left\| {\mathit{\boldsymbol{\widetilde x}}(t) + \mathit{\boldsymbol{\widehat x}}(t)} \right\|$, 则不等式成立:

$ \left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\| < \sqrt \sigma \left\| \mathit{\boldsymbol{C}} \right\|(\left\| {\mathit{\boldsymbol{\tilde x}}(t)} \right\| + \left\| {\mathit{\boldsymbol{\hat x}}(t)} \right\|) $ (26)

令:

$ \left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\| < \sqrt \sigma \left\| \mathit{\boldsymbol{C}} \right\|\left\| {\mathit{\boldsymbol{\tilde x}}(t)} \right\| $ (27)

若不等式(27)成立, 则一定存在不等式(7)成立, 同样能保证系统式(3)的渐近稳定性。因此, 有$\left\| {\mathit{\boldsymbol{\tilde x}}(t)} \right\| > \frac{1}{{\sqrt \sigma \left\| \mathit{\boldsymbol{C}} \right\|}}\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|$, 由于σ∈(0, 1), 可以得到$\left\| {\mathit{\boldsymbol{\tilde x}}(t)} \right\| > \frac{1}{{\left\| \mathit{\boldsymbol{C}} \right\|}}\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|$或者可以得到$ - \left\| {\mathit{\boldsymbol{\tilde x}}(t)} \right\| < - \frac{1}{{\left\| \mathit{\boldsymbol{C}} \right\|}}\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|$, 则可将系统的状态空间描述为:

$ \begin{array}{l} \mathit{\boldsymbol{\dot x}}(t) = (\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})\mathit{\boldsymbol{x}}(t) - \mathit{\boldsymbol{B\tilde Kx}}(t) \le \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})\mathit{\boldsymbol{x}}(t) - \frac{{\mathit{\boldsymbol{BK}}}}{{\left\| \mathit{\boldsymbol{C}} \right\|}}\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\| \le \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (\mathit{\boldsymbol{A}} + \mathit{\boldsymbol{BK}})\mathit{\boldsymbol{x}}(t) + \frac{{\mathit{\boldsymbol{BK}}}}{{\left\| \mathit{\boldsymbol{C}} \right\|}}\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\| \end{array} $ (28)

推论1  对于闭环系统式(3)以及控制律$\mathit{\boldsymbol{u}} = \mathit{\boldsymbol{K\hat x}}$, 在事件触发条件式(7)下任意的时间序列{tk+1tk}, 都存在一个正的最小的时间下界τ:

$ \tau = \frac{1}{{p - q}}{\rm{ln}}\frac{{p\sqrt \sigma + q}}{{q\sqrt \sigma + q}} $ (29)

其中, $q = \left\| \mathit{\boldsymbol{A}} \right\| + \left\| {\mathit{\boldsymbol{BK}}} \right\|, p = \left\| {\mathit{\boldsymbol{BK}}} \right\|$

证明  利用式(28)的结论, 可以通过以下变量的导数得到触发间隔下限:

$ \begin{array}{l} \begin{array}{*{20}{l}} {\frac{{{\rm{d}}\frac{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}}}}{{{\rm{d}}t}} = \frac{{\mathit{\boldsymbol{e}}_y^{\rm{T}}(t){{\mathit{\boldsymbol{\dot e}}}_y}(t)}}{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}} - \frac{{{\mathit{\boldsymbol{y}}^{\rm{T}}}(t)\mathit{\boldsymbol{\dot y}}(t)}}{{{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}^2}}}\frac{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}} \le }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{\left\| {\mathit{\boldsymbol{e}}_y^{\rm{T}}(t)} \right\|\left\| {\mathit{\boldsymbol{\dot y}}(t)} \right\|}}{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}} + \frac{{\left\| {\mathit{\boldsymbol{\dot y}}(t)} \right\|\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}^2}}} = } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {\left( {1 + \frac{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}}} \right)\frac{{\left\| {\mathit{\boldsymbol{\dot y}}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}} = }\\ {\left( {1 + \frac{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}}} \right)\frac{{\left\| {\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}} \le }\\ {\left( {1 + \frac{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}}} \right)\frac{{q\left\| {\mathit{\boldsymbol{y}}(t)} \right\| + p\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}} \le }\\ {\left( {1 + \frac{{\left\| {{\mathit{\boldsymbol{e}}_y}(t)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}}} \right)\left( {q + p\frac{{\left\| {{\mathit{\boldsymbol{e}}_{y(t)}}} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}(t)} \right\|}}} \right)} \end{array} \end{array} $ (30)

$\phi = \frac{{\left\| {{\mathit{\boldsymbol{e}}_y}\left( t \right)} \right\|}}{{\left\| {\mathit{\boldsymbol{y}}\left( t \right)} \right\|}}$, 可以简化式(30)为:

$ \dot \phi \le (1 + \phi )(q + p\phi ) $ (31)

令初始条件为ϕ(0)=0, 通过求解式(31)可以得到:

$ \phi (t) = \frac{{q - q{\mathit{\boldsymbol{e}}^{(p - q)t}}}}{{q{\mathit{\boldsymbol{e}}^{(p - q)t}} - p}} $ (32)

其中, $q = \left\| \mathit{\boldsymbol{A}} \right\| + \left\| {\mathit{\boldsymbol{BK}}} \right\|, p = \left\| {\mathit{\boldsymbol{BK}}} \right\|$。根据式(10)可知:

$ \phi (\tau ) = \sqrt \sigma ,\phi (0) = 0 $

因此, 可以得到事件触发最小时间下界τ为:

$ \tau = \frac{1}{{p - q}}{\rm{ln}}\frac{{p\sqrt \sigma + q}}{{q\sqrt \sigma + q}} $ (33)

其中, $q = \left\| \mathit{\boldsymbol{A}} \right\| + \left\| {\mathit{\boldsymbol{BK}}} \right\|, p = \left\| {\mathit{\boldsymbol{BK}}} \right\|$均大于0, 且q>p, 则存在:

$ {\frac{{p\sqrt \sigma + q}}{{q\sqrt \sigma + q}} < 1} $ (34)
$ {{\rm{ln}}\frac{{p\sqrt \sigma + q}}{{q\sqrt \sigma + q}} < 0} $ (35)

因此τ>0。事件触发机制不存在Zeno行为。

推论表明, 对于系统给定的状态, 动态ETM给出的下一个执行时间大于ETM给出的时间。

推论2  对于给定的β为Lipschtiz连续的K函数, σ>0, η0, θR0+, 令k∈Z0+, tkR0+, x(tk)∈Rnη(tk)≥0。令tk+1s为事件触发时刻, tk+1d为动态事件触发时刻, 那么有tk+1stk+1d

证明   假设tk+1s>tk+1d, 通过式(17)可以得到:

$ \sigma \left\| {\mathit{\boldsymbol{y}}(t_{k + 1}^d)} \right\| - {\left\| {{\mathit{\boldsymbol{e}}_y}(t_{k + 1}^{d - })} \right\|^2} > 0 $ (36)

θ>0时, 由式(19)和引理3可以得到:

$ \begin{array}{*{20}{l}} {0 \ge \eta (t_{k + 1}^d) + \theta (\sigma {{\left\| {\mathit{\boldsymbol{y}}(t_{k + 1}^d)} \right\|}^2} - {{\left\| {{\mathit{\boldsymbol{e}}_y}(t_{k + 1}^{d\_})} \right\|}^2}) \ge }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \theta (\sigma \left\| {\mathit{\boldsymbol{y}}(t_{k + 1}^d)} \right\| - {{\left\| {{\mathit{\boldsymbol{e}}_y}(t_{k + 1}^{d\_})} \right\|}^2})} \end{array} $ (37)

这与式(36)互相矛盾, 因此tk+1stk+1d

如果θ=0, 那么由事件触发条件式(19)可知η(tdk+1)=0且η·(tk+1d)≤0, 通过式(18)又得到0≥η·(tk+1d)=σ‖y(tk+1d)‖-‖ey(tk+1d)‖2。这同样与式(36)互相矛盾, 因此tk+1stk+1d。可以得出结论, 动态ETM式(19)的最小触发间隔不会小于ETM式(17)的执行时间。类似的, 可以选取较小的参数θ得到一个较大的最小触发间隔时间, 同时意味着动态触发的闭环系统不会存在Zeno行为。

3 模拟仿真

使用一个例子来验证理论结果的有效性。考虑形式为式(3)的线性系统为:

$ {\mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} { - 0.8}&{0.2}\\ 1&0 \end{array}} \right],\mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{l}} 1\\ 0 \end{array}} \right]} $
$ {\mathit{\boldsymbol{C}} = \left[ {\begin{array}{*{20}{l}} { - 0.65}&{6.85} \end{array}} \right],{\mathit{\boldsymbol{x}}_0} = \left[ {\begin{array}{*{20}{c}} { - 0.2}\\ {0.4} \end{array}} \right]} $

系统很明显是完全可控可观的。

反馈增益由极点配置设计, 极点选取为{-0.2, -0.7}, 可以得到K=-0.1-0.34, 而观测器的增益是将观测器系统的极点置于{-3, -4}, 可以得到$\mathit{\boldsymbol{L}} = \left[ \begin{array}{l} 1\\ 1 \end{array} \right]$, L作为观测器的输出误差反馈矩阵, 使得${\mathit{\boldsymbol{\hat x}}}$可以渐近收敛到x

通过求解触发条件式(7)可以得到矩阵P1的值以及σ=0.003 1, 事件触发条件就为eyT(t)ey(t)<0.003 1yT(t)y(t), 且${\mathit{\boldsymbol{p}}_1} = \left[ {\begin{array}{*{20}{c}} {7.530{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 6}&{0.946{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 5}\\ {0.946{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 5}&{1.078\;\;3} \end{array}} \right]$

求解LMI式(8)可以得到矩阵P2值为${\mathit{\boldsymbol{p}}_2} = \left[ {\begin{array}{*{20}{c}} {1.042\;\;2}&{ - 0.770\;\;3}\\ { - 0.770\;\;3}&{0.956\;\;5} \end{array}} \right]$

实验选取β(η)=λη是满足Lipschitz连续的K函数。关于λθ的参数, 为了显示更好的效果, 参数选取为λ=0.01, σ=0.003 1和θ=1。这些参数选取符合具有动态触发机制的事件触发机制要求。

图 2显示了ETM的误差范数, 误差范数一旦达到阈值, 它就会重置为0。图 3显示了动态ETM的误差范数, 当误差范数达到阈值时, 它也会重置为0。从图中可以看出, 动态ETM可容许较大的误差范数阈值, 这是由事件触发条件决定的。ETM的触发次数为201, 动态ETM的触发次数为30, 与ETM相比, 动态ETM减少了触发次数。

Download:
图 2 ETM误差范数 Fig. 2 ETM error norm
Download:
图 3 动态ETM误差范数 Fig. 3 Dynamic ETM error norm

基于观测器ETM的平均触发时间间隔如图 4所示, 触发时间间隔的平均值为0.224 s。图 5所示为基于观测器的动态ETM事件触发机制的平均触发时间间隔, 平均触发时间间隔为1.500 s。ETM的触发时间间隔的平均值远小于动态ETM的平均触发时间间隔。

Download:
图 4 ETM触发时间间隔 Fig. 4 ETM trigger the interval
Download:
图 5 动态ETM触发时间间隔 Fig. 5 Dynamic ETM trigger time interval

图 6图 7图 8中的状态轨迹展示了基于观测器的动态ETM事件触发机制系统的渐近稳定性。图 6显示了系统的状态轨迹, 从图 6可以看出, 系统的状态由初始值[-0.2, 0.4]逐渐趋于原点, 系统是渐近稳定的。图 7显示了观测器的状态轨迹, 从图 7可以看出, 观测器的状态由初始值[0, 0]逐渐逼近系统实际状态, 且最终趋于稳定。图 8显示了观测器误差的状态轨迹, 在初始时刻, 针对状态不可测现象, 令观测器状态和系统实际状态初始值不同, 因此观测器误差较大, 随着系统的运行, 误差可以迅速减小并趋于0。

Download:
图 6 动态ETM系统状态轨迹 Fig. 6 Dynamic ETM system state trajectory
Download:
图 7 动态ETM观测器状态轨迹 Fig. 7 Dynamic ETM observer state trajectory
Download:
图 8 动态ETM观测器状态误差轨迹 Fig. 8 Dynamic ETM observer state error trajectory
4 结束语

本文提出一种基于观测器的动态事件触发机制, 根据2个LMIs建立系统渐近稳定的条件。通过引入额外的内部动态变量, 事件触发条件会更加多样化, 从而减少事件触发次数。本文给出了Zeno行为不存在的证明过程, 并通过仿真实例论证结果, 这些实例可应用于线性时不变系统。下一步可以考虑改善事件触发条件和加入优化控制, 以期达到优化系统性能指标的目的。

参考文献
[1]
HEEMELS W P M H, JOHANSSON K H, TABUADA P.An introduction to event-triggered and self-triggered control[C]//Proceedings of the 51st IEEE Conference on Decision and Control.Washington D.C., USA: IEEE Press, 2012: 3270-3285.
[2]
YANG Feisheng, WANG Jing, PAN Quan. A survey of networked event-triggered control[J]. Control and Decision, 2018, 33(6): 969-977. (in Chinese)
杨飞生, 汪璟, 潘泉. 基于事件触发机制的网络控制研究综述[J]. 控制与决策, 2018, 33(6): 969-977.
[3]
LI Lili, SONG Linyang, GUO Jiajun, et al. Event-triggered output regulation for a class of switched linear systems[J]. Information and Control, 2019, 48(2): 245-250. (in Chinese)
李莉莉, 宋林阳, 郭家珺, 等. 一类线性切换系统的事件触发输出调节问题[J]. 信息与控制, 2019, 48(2): 245-250.
[4]
VELASCO M, MARTI P, BINI E.Control-driven tasks: modeling and analysis[C]//Proceedings of 2008 Real-Time Systems Symposium.Washington D.C., USA: IEEE Press, 2008: 280-290.
[5]
HUANG Hongwei, HUANG Tianmin, WU Sheng. Event-triggered consensus control of second-order multi-agent systems[J]. Application Research of Computers, 2017, 34(1): 27-30. (in Chinese)
黄红伟, 黄天民, 吴胜. 基于事件触发控制的二阶多智能体的一致性[J]. 计算机应用研究, 2017, 34(1): 27-30.
[6]
TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685. DOI:10.1109/TAC.2007.904277
[7]
FAN Yuan, ZHANG Chengxiao, SONG Cheng. Sampling-based self-triggered coordination control for multi-agent systems with application to distributed generators[J]. International Journal of Systems Science, 2018, 49(15): 3048-3062. DOI:10.1080/00207721.2018.1533047
[8]
ZHANG Jie, TIAN Yuan. Consensus analysis of directed multi-agent networks under distributed event-triggered control[J]. Computer Engineering, 2017, 43(8): 288-292,298. (in Chinese)
张捷, 田袁. 分布式事件触发控制下的有向多智能体网络一致性分析[J]. 计算机工程, 2017, 43(8): 288-292,298.
[9]
FAN Yuan, LIU Lu, FENG Gang, et al. Self-triggered consensus for multi-agent systems with zeno-free triggers[J]. IEEE Transactions on Automatic Control, 2015, 60(10): 2779-2784. DOI:10.1109/TAC.2015.2405294
[10]
WANG X F, LEMMON M D. Self-triggered feedback control systems with finite-gain L2 stability[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 452-467. DOI:10.1109/TAC.2009.2012973
[11]
LI Bing, WANG Zidong, MA Lifeng, et al. Observer-based event-triggered control for nonlinear systems with mixed delays and disturbances:the input-to-state stability[J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2806-2819. DOI:10.1109/TCYB.2018.2837626
[12]
CHEN Xia, HAO Fei.Stability of event-triggered output-feedback control system[C]//Proceedings of the 30th Chinese Control Conference.Washington D.C., USA: IEEE Press, 2011: 1184-1189.
[13]
CHEN Xia, HAO Fei. Observer-based event-triggered control for certain and uncertain linear systems[J]. IMA Journal of Mathematical Control and Information, 2013, 30(4): 527-542. DOI:10.1093/imamci/dns035
[14]
DONG Chuanbao, FAN Yuan, SONG Cheng.Observer-based output-feedback control for uncertain linear systems with event-triggered[C]//Proceedings of 2018 Chinese Control and Decision Conference.Washington D.C., USA: IEEE Press, 2018: 1948-9447.
[15]
MAZO M J, ANTA A, TABUADA P. An ISS self-triggered implementation of linear controllers[J]. Automatica, 2010, 46(8): 1310-1314. DOI:10.1016/j.automatica.2010.05.009
[16]
SEURET A, PRIEUR C.Event-triggered sampling algorithms based on a Lyapunov function[C]//Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference.Washington D.C., USA: IEEE Press, 2011: 6128-6133..
[17]
WANG X F, LEMMON M D.Event design in event-triggered feedback control systems[C]//Proceedings of the 47th IEEE Conference on Decision and Control.Washington D.C., USA: IEEE Press, 2008: 2105-2110.
[18]
YANG Yong, ZHANG Chengxiao, WANG Lun, et al.Distributed event-triggered control with dynamic triggering mechanisms for multi-agent systems[C]//Proceedings of the 29th Chinese Control and Decision Conference.Washington D.C., USA: IEEE Press, 2017: 2508-2512.
[19]
WANG Shi, ZHANG Peng, FAN Yuan.Centralized event-triggered control of multi-agent systems with dynamic triggering mechanisms[C]//Proceedings of the 27th Chinese Control and Decision Conference.Washington D.C., USA: IEEE Press, 2015: 2183-2187.
[20]
GIRARD A. Dynamic triggering mechanisms for event-triggered control[J]. IEEE Transactions on Automatic Control, 2015, 60(7): 1992-1997. DOI:10.1109/TAC.2014.2366855
[21]
BOYD S, EL G L, FERON E, et al.Linear matrix inequalities in system and control theory[M].[S.l]: Society for Industrial and Applied Mathematics, 1994.
[22]
YU Li. Robust control-the method to solve linear matrix inequality[M]. Beijing: Tsinghua University Press, 2002. (in Chinese)
俞立. 鲁棒控制:线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002.