Author Login Editor-in-Chief Peer Review Editor Work Office Work

Computer Engineering ›› 2022, Vol. 48 ›› Issue (7): 189-198. doi: 10.19678/j.issn.1000-3428.0061671

• Computer Architecture and Software Technology • Previous Articles     Next Articles

CPN Modeling and Simulation for Onboard TBTC-CBTC System Degradation Scenario

WANG Xiaoyong1,2,3, DONG Decun1, OU Dongxiu2   

  1. 1. Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China;
    2. Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China;
    3. CASCO Signal Co., Ltd., Shanghai 200072, China
  • Received:2021-05-17 Revised:2021-07-07 Online:2022-07-15 Published:2021-07-13

车载TBTC-CBTC系统降级场景下的CPN建模与仿真

汪小勇1,2,3, 董德存1, 欧冬秀2   

  1. 1. 同济大学 道路与交通工程教育部重点实验室, 上海 201804;
    2. 同济大学 上海市轨道交通结构耐久与系统安全重点实验室, 上海 201804;
    3. 卡斯柯信号有限公司, 上海 200072
  • 作者简介:汪小勇(1976—),男,正高级工程师、博士研究生,主研方向为交通运输工程;董德存、欧冬秀,教授、博士。
  • 基金资助:
    国家自然科学基金(52172329);国家重点研发计划(2018YFB1201403);上海市自然科学基金(22ZR1422200)。

Abstract: The Track circuit-Based Train Control(TBTC)-Communication-Based Train Control(CBTC) dual-mode onboard system is the key to realizing rail transit multi-network integration.Its mode switching is characterized by strong randomness and concurrency and directly influences the service availability of onboard signal systems.The degradation of onboard signal system faults leads to the reduction in rail transit resource utilization.The degree of reduction is reflected in the increase in train tracking time interval, which depends on the length of the section and the length of the detection section occupied by the TBTC train.From the perspective of resource allocation, use, and release under different modes, the train tracking operation scenario of the TBTC-CBTC dual-mode redundant onboard signal system is modeled using Colored Petri Network(CPN) during train operation to simulate the randomness of CBTC onboard signal system failure and the influence of system degradation on subsequent trains and accurately describe and analyze the impact on train operation.The typical configuration parameters of urban rail transit projects are substituted into the CPN model for simulation to verify the extent to which mode switching influences the operation interval under the conditions of different lines.Based on the simulation results, when the section length is at most 1 500 m, the train delay can be controlled within 180 s and the delay time will increase with an increase in the section length.

Key words: multi-mode train control system, Track circuit-Based Train Control(TBTC)-Communication-Based Train Control(CBTC) system, Colored Petri Network(CPN), onboard signal degradation, service availability

摘要: 基于轨道电路的列车控制(TBTC)-基于通信的列车控制(CBTC)双模车载系统是实现轨道交通多网融合的关键,其模式间切换具有较强的随机性和并发性,并直接影响车载信号系统的运营可用性。然而,车载信号系统故障降级导致轨道交通资源利用率降低,表现为列车追踪的时间间隔增加,而间隔增加程度取决于区间长度和TBTC列车占用检测区段长度。从不同模式下资源分配、使用和释放角度,在列车运行过程中利用有色Petri网对TBTC-CBTC双模冗余车载信号系统的列车追踪运营场景进行建模,模拟CBTC车载信号系统故障发生的随机性和系统降级对后续列车的影响,精准描述并分析列车运营受影响的情况。将城市轨道交通项目的典型配置参数代入到有色Petri网模型中进行仿真,验证在不同线路下运营间隔受模式切换影响的程度。仿真结果表明,当区间长度小于1 500 m时,列车晚点时间可控制在180 s以内,晚点时间随着区间长度的增加而延长。

关键词: 多模列控系统, 基于轨道电路的列车控制-基于通信的列车控制系统, 有色Petri网, 车载信号降级, 运营可用性

CLC Number: