[1] ALSMADI I, GAN K H. Review of short-text
classification[J]. International Journal of Web Information
Systems, 2019, 15(2): 155-182.
[2] PANG Wei. Short text classification via term graph
[EB/OL]. [2020-10-11]. https://arxiv.org/abs/2001.10338.
[3] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of
tricks for efficient text classification[C]//Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics. Valencia,
Spain: ACL Press, 2017: 427-431.
[4] SHIMURA K, LI J, FUKUMOTO F. HFT-CNN: Learning
hierarchical category structure for multi-label short text
categorization[C]//Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing.
Brussels, Belgium: ACL Press, 2018: 811-816.
[5] SINHA K, DONG Y, CHEUNG J C K, et al. A
hierarchical neural attention-based text classifier[C]//
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels,
Belgium: ACL Press, 2018: 817-823.
[6] KIM Y. Convolutional Neural Networks for Sentence
Classification[C]//Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2014. Doha, Qatar: ACL Press, 2014: 1746-1751.
[7] ZHANG Xiang, ZHAO Junbo, LECUN Y. Character-level
convolutional networks for text classification[C]//
Advances in neural information processing systems.
Montreal, Quebec, Canada: MIT Press, 2015: 649-657.
[8] WANG Jin, WANG Zhongyuan, ZHANG Dawei, et al.
Combining knowledge with deep convolutional neural
networks for short text classification[C]//Proceedings of
the 26th International Joint Conference on Artificial
Intelligence. Melbourne, Australia: IJCAI Press, 2017:
2915-2921.
[9] HOWARD J, RUDER S. Universal language model
fine-tuning for text classification[C]//Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics. Melbourne, Australia: ACL Press,
2018:328-339. [10] GENG Ruiying, LI Binhua, LI Yongbin, et al. Few-shot
text classification with induction network[J]. Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing. Hong Kong,
China: ACL Press, 2019:3904-3913.
[11] JASON W, KAI Z. EDA: Easy data augmentation
techniques for boosting performance on text classification
Tasks[C]//Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing. Hong Kong, China: ACL Press,
2019: 6381-6387.
[12] YAO Liang, MAO Chengsheng, LUO Yuan. Graph
convolutional networks for text classification[C]//
Proceedings of the AAAI Conference on Artificial
Intelligence.Honolulu, Hawaii, USA: AAAI Press, 2019,
33: 7370-7377.
[13] HU Linmei, YANG Tianchi, SHI Chuan, et al.
Heterogeneous graph attention networks for
semi-supervised short text classification[C]//Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing. Hong Kong,
China: ACL Press, 2019: 4821–4830.
[14] YAN Xiaohu, GUO Jiafeng, LAN Yanyan, et al. A biterm
topic model for short texts[C]//Proceedings of the 22nd
international conference on World Wide Web. Rio de
Janeiro, Brazil: ACM Press, 2013: 1445-1456.
[15] FERRAGINA P, SCAIELLA U. Tagme: On-the-fly
annotation of short text fragments (by wikipedia
entities)[C]//Proceedings of the 19th ACM international
conference on Information and knowledge management.
Toronto, Ontario, Canada:ACM Press, 2010: 1625-1628.
[16] RONG Yu, HUANG Wenbing, XU Tingyang, et al.
DropEdge:Towards deep graph convolutional networks on
node classification[EB/OL]. [2020-10-11].
https://openreview.net/forum?id=Hkx1qkrKPr
[17] LIU Pengfei, QIU Xipeng, HUANG Xuanjing. Recurrent
neural network for text classification with multi-task
learning[C]//Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence. New York,
USA: IJCAI/AAAI Press, 2016: 2873–2879.
[18] TANG Jian, QU Meng, and MEI Qiaozhu. Pte: Predictive
text embedding through large-scale heterogeneous text
networks[C]//Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining. Sydney, NSW, Australia: ACM Press, 2015:
1165-1174.
[19] WANG Guoyin, LI Chunyuan, WANG Wenlin, et al. Joint
embedding of words and labels for text classification[C]//
Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics. Melbourne,
Australia: ACL Press, 2018: 2321-2331.
[20] PHAN Xuan Hieu, NGUYEN Le Minh, HORIGUCHI
Susumu. Learning to classify short and sparse text & web
with hidden topics from large-scale data collections[C]//
Proceedings of the 17th international conference on World
Wide Web. Beijing, China: ACM Press, 2008: 91-100.
[21] BO P, LEE L. Seeing stars: exploiting class relationships
for sentiment categorization with respect to rating
scales[C]//Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics. University of
Michigan, USA: ACL Press, 2005: 115-124.
|