[1] ALSMADI I, GAN K H.Review of short-text classification[J].International Journal of Web Information Systems, 2019, 15(2):155-182. [2] 高云龙, 吴川, 朱明.基于改进卷积神经网络的短文本分类模型[J].吉林大学学报(理学版), 2020, 58(4):923-940. GAO Y L, WU C, ZHU M.Short text classification model based on improved convolutional neural network[J].Journal of Jilin University(Science Edition), 2020, 58(4):923-940.(in Chinese) [3] JOULIN A, GRAVE E, BOJANOWSKI P, et al.Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.[S.l.]:ACL Press, 2017:427-431. [4] SHIMURA K, LI J, FUKUMOTO F.HFT-CNN:learning hierarchical category structure for multi-label short text categorization[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.[S.l.]:ACL Press, 2018:811-816. [5] SINHA K, DONG Y, CHEUNG J C K, et al.A hierarchical neural attention-based text classifier[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.[S.l.]:ACL Press, 2018:817-823. [6] KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.[S.l.]:ACL Press, 2014:1746-1751. [7] ZHANG X, ZHAO J B, LECUN Y.Character-level convolutional networks for text classification[C]//Proceedings of NIPS'15.Cambridge, USA:MIT Press, 2015:649-657. [8] WANG J, WANG Z Y, ZHANG D W, et al.Combining knowledge with deep convolutional neural networks for short text classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.New York, USA:IJCAI Press, 2017:2915-2921. [9] HOWARD J, RUDER S.Universal language model fine-tuning for text classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL Press, 2018:328-339. [10] GENG R Y, LI B H, LI Y B, et al.Few-shot text classification with induction network[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.[S.l.]:ACL Press, 2019:3904-3913. [11] JASON W, KAI Z.EDA:easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.[S.l.]:ACL Press, 2019:6381-6387. [12] YAO L, MAO C S, LUO Y.Graph convolutional networks for text classification[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:7370-7377. [13] HU L M, YANG T C, SHI C, et al.Heterogeneous graph attention networks for semi-supervised short text classification[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.[S.l.]:ACL Press, 2019:4821-4830. [14] YAN X H, GUO J F, LAN Y Y, et al.A biterm topic model for short texts[C]//Proceedings of the 22nd International Conference on World Wide Web.New York, USA:ACM Press, 2013:1445-1456. [15] FERRAGINA P, SCAIELLA U.TAGME:on-the-fly annotation of short text fragments(by Wikipedia entities)[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2010:1625-1628. [16] RONG Y, HUANG W B, XU T Y, et al.DropEdge:towards deep graph convolutional networks on node classification[EB/OL].[2020-10-11].https://openreview.net/forum?id=Hkx1qkrKPr. [17] LIU P F, QIU X P, HUANG X J.Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence.New York, USA:IJCAI/AAAI Press, 2016:2873-2879. [18] TANG J, QU M, MEI Q Z.PTE:predictive text embedding through large-scale heterogeneous text networks[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2015:1165-1174. [19] WANG G Y, LI C Y, WANG W L, et al.Joint embedding of words and labels for text classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL Press, 2018:2321-2331. [20] PHAN X H, NGUYEN L M, HORIGUCHI S.Learning to classify short and sparse text & Web with hidden topics from large-scale data collections[C]//Proceedings of the 17th International Conference on World Wide Web.New York, USA:ACM Press, 2008:91-100. [21] BO P, LEE L.Seeing Stars:exploiting class relationships for sentiment categorization with respect to rating scales[C]//Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL Press, 2005:115-124. |