人工智能与模式识别
孙文洁, 李宗民, 孙浩淼
如何在部分可观测的情况下实现智能体之间的协同配合是多智能体强化学习(MARL)中的一个重要问题。值函数分解方法解决了信用分配问题,是一种实现多智能体之间协同配合的有效方法,然而在现有的值函数分解方法中,智能体个体动作值函数仅取决于局部信息,不允许智能体之间进行显式的信息交换,阻碍了这一系列算法的性能,使其无法适用于复杂场景。为了解决这一问题,在值函数分解方法中引入智能体间的通信,为智能体提供有效的非局部信息以帮助其理解复杂环境。在此基础上,提出一个基于图神经网络的分层通信模型,通过图神经网络提取相邻智能体之间需要交换的有用信息,同时模型能够实现从非通信向充分通信过渡,在通信范围有限的情况下实现全局合作,适用于现实世界中通信范围受约束的情况。在星际争霸Ⅱ多智能体挑战赛(SMAC)环境和捕食者-猎物(PP)环境下进行实验,结果表明,在SMAC的4个不同场景下,该方法与QMIX、VBC等基线算法相比平均胜率提升2~40个百分点,并且能够有效解决非单调环境下的捕食者-猎物问题。