开发研究与工程应用
周思瑜, 徐慧英, 朱信忠, 黄晓, 盛轲, 曹雨淇, 陈晨
手机屏幕作为人机交互的主窗口, 已成为影响用户体验和终端整体性能的重要因素。因此, 市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求, 针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况, 提出一种以YOLOv8n作为基准模型的PGS-YOLO算法。PGS-YOLO通过增加一个专门的微小目标检测头, 并结合SeaAttention注意力模块, 有效提升对小目标的探测能力; 将骨干网络和特征融合网络分别融入PConv与GhostNetV2轻量化模块, 在保证精度的同时降低模型的参数量, 提高瑕疵检测的速度与效率。实验结果表明, 在北京大学手机屏幕表面瑕疵数据集中, 相较于YOLOv8n, PGS-YOLO算法的mAP@0.5提升了2.5百分点, mAP@0.5∶0.95提升了2.2百分点, 在手机屏幕瑕疵检测过程中不仅能对大片的瑕疵做到精准检测, 还能对小瑕疵保持一定的准确度。此外, 检测性能优于YOLOv5n、YOLOv8s等大部分YOLO系列算法。同时, 参数量仅为2.0×106, 小于YOLOv8n, 满足工业场景对手机屏幕瑕疵检测的需求。