[1] ARIKAN E. Channel polarization: A method for
constructing capacity-achieving codes[C]// 2008 IEEE
International Symposium on Information Theory.
Toronto: IEEE Press, 2008: 1173 - 1177.
[2] ARIKAN E. Channel polarization: A method for construc
ting capacity-achieving codes for symmetric binary input
memoryless channels[J]. IEEE Transactions on Informati
on Theory, 2009, 55(7): 3051-3073.
[3] TAL I, VARDY A. List decoding of polar codes[J]. IEEE
Transactions on Information Theory, 2015, 61(5): 2213 –
2226.
[4] CHEN Kai, NIU Kai, LIN Jiaru. Improved Successive
Decoding of Polar Codes[J]. IEEE Transaction on
Communication, 2013,61(8):3100-3107.
[5] GALLAGER R. Low Density Parity Check Codes[J].
IEEE Transactions on Information Theory, 1962, 1(8):
21-28.
[6] RAO K D. Turbo Codes[M]. US: Springer Singapore, 20
19.
[7] WANG Tao, QU Daoming, JIANG Tao,Parity-Check-Concatenated Polar Codes[J]. IEEE
Communication Letters, 2016, 20(12): 2342-2345.
[8] WANG Qiong, LUO Yajie, LI Sifang. Polar Adaptive
Successive Cancellation List Decoding Based on
Segmentation Cyclic Redundancy Check[J]. Journal of
Electronics and Information Technology, 2019, 41(7):
1572-1578.
王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化
码自适应连续取消列表译码算法[J]. 电子与信息学报,
2019, 41(7):1572-1578.
[9] NIU Kai, CHEN Kai. CRC-aid decoding of polar
codes[J]. IEEE Communication Letter, 2012, 16(10):
1668 - 1671.
[10] SHANNON C E. A mathematical theory of
communication[J]. The System Technical Journal, 1948,
27(03): 379 - 423.
[11] LIU Yajun, LI Shibao, LIU Jianhang, et al. A
Low-latency Successive Cancellation Algorithm for Polar
Codes[J]. Computer Engineering, 2018, 44(3):78-81.
刘亚军,李世宝,刘建航,等.一种低时延极化码列表连续
删除译码算法[J].计算机工程,2018,44(03):78-81.
[12] AFISIADIS O, BALATSOUKAS-STIMMING A,
BURG A P. A low-complexity improved successive
cancellation decoder for polar codes[C]// 48th Annual
Asilomar Conference on Signals, Systems and Computers.
California: IEEE Press, 2014: 2116–2120.
[13] KIM H, LEE H, PARK H. InterleaverAided Successive C
ancellation Flip Decoding Algorithm for Polar Codes[C]//
IEEE 4th International Conference on Computer and
Communications(ICCC). Chengdu: IEEE Press, 2018: 25
59 - 2563.
[14] CHANDERSIS L, SAVIN V, DECLERCQ D.
Dynamic-SCFlip Decode of polar codes[J]. IEEE
Transition on Communications, 2018, 66(6): 2333-2345.
[15] ZHANG Xueting, LIU Yingzhuang, CHEN Shaoping.
BER Evaluation Based SCFlip Algorithm for Polar Codes
Decoding[J]. IEEE ACCESS, 2019, 8(1): 3042-3054.
[16] ERCAN F, CONDO C, GROSS W J. Improved
Bit-Flipping Algorithm for Successive Cancellation
Decoding of Polar Codes[J]. IEEE Transaction on
Communications, 2019, 61(01): 61-72.
[17] CONDO C, ERCAN F, GROSS W J. Improved
successive cancellation flip decoding of polar codes
based on error distribution[C]// IEEE Wireless
Communication Networking Conference Workshops
(WCNCW). Barcelona: IEEE Press,2018: 19–24.
[18] LI Shibao, DENG Yunqiang, GAO Xun,et al.
Generalized Segmented Bit-Flipping Scheme for
Successive Cancellation Decoding of Polar Codes With
Cyclic Redundancy Check[J]. IEEE ACCESS,
2019,7(1):8324-83436.
[19] PETER T. Efficient design and decoding of polar codes
[J]. IEEE Transaction on Communications, 2012, 60(11):
3221 - 3227.
[20] HE Gaoning, BELFIORE J C, LAND I, et
al.Beta-Expansion: A Theoretical Framework for Fast
and Recursive Construction of Polar Codes[C]// In:2017
IEEE Communication
Conference(GLOBECOM).Singapore: IEEE
Press,2018:1-6.
[21] MORI R,TANAKA T. Performance and construction of
polar codes on symmetric binary-input memoryless
channel[C]// IEEE International Sysposium on
Information Theory. Seoul: IEEE
Press,2012,60(11):3221-3227.
|