[1] ARIKAN E.Channel polarization:a method for constructing capacity-achieving codes[C]//Proceedings of 2008 IEEE International Symposium on Information Theory.Toronto, Canada:IEEE Press, 2008:1173-1177. [2] ARIKAN E.Channel polarization:a method for constructing capacity-achieving codes for symmetric binary input memoryless channels[J].IEEE Transactions on Information Theory, 2009, 55(7):3051-3073. [3] TAL I, VARDY A.List decoding of polar codes[J].IEEE Transactions on Information Theory, 2015, 61(5):2213-2226. [4] CHEN K, NIU K, LIN J R.Improved successive decoding of polar codes[J].IEEE Transactions on Communication, 2013, 61(8):3100-3107. [5] GALLAGER R.Low density parity check codes[J].IEEE Transactions on Information Theory, 1962, 1(8):21-28. [6] RAO K D.Turbo codes[M].Berlin, Germany:Springer, 2019. [7] WANG T, QU D M, JIANG T.Parity-check-concatenated polar codes[J].IEEE Communication Letters, 2016, 20(12):2342-2345. [8] 王琼, 罗亚洁, 李思舫.基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J].电子与信息学报, 2019, 41(7):1572-1578. WANG Q, LUO Y J, LI S F.Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J].Journal of Electronics and Information Technology, 2019, 41(7):1572-1578.(in Chinese) [9] NIU K, CHEN K.CRC-aid decoding of polar codes[J].IEEE Communication Letter, 2012, 16(10):1668-1671. [10] SHANNON C E.A mathematical theory of communication[J].The System Technical Journal, 1948, 27(3):379-423. [11] 刘亚军, 李世宝, 刘建航, 等.一种低时延极化码列表连续删除译码算法[J].计算机工程, 2018, 44(3):78-81. LIU Y J, LI S B, LIU J H, et al.A low-latency successive cancellation algorithm for polar codes[J].Computer Engineering, 2018, 44(3):78-81.(in Chinese) [12] AFISIADIS O, BALATSOUKAS-STIMMING A, BURG A P.A low-complexity improved successive cancellation decoder for polar codes[C]//Proceedings of the 48th Annual Asilomar Conference on Signals, Systems and Computers.Pacific Grove, USA:IEEE Press, 2014:2116-2120. [13] KIM H, LEE H, PARK H.Interleaver-aided successive cancellation flip decoding algorithm for polar codes[C]//Proceedings of the 4th IEEE International Conference on Computer and Communications.Washington D.C., USA:IEEE Press, 2018:2559-2563. [14] CHANDERSIS L, SAVIN V, DECLERCQ D.Dynamic-SCFlip decode of polar codes[J].IEEE Transitions on Communications, 2018, 66(6):2333-2345. [15] ZHANG X T, LIU Y Z, CHEN S P.BER evaluation based SCFlip algorithm for polar codes decoding[J].IEEE Access, 2019, 8:3042-3054. [16] ERCAN F, CONDO C, GROSS W J.Improved bit-flipping algorithm for successive cancellation decoding of polar codes[J].IEEE Transaction on Communications, 2019, 61(1):61-72. [17] CONDO C, ERCAN F, GROSS W J.Improved successive cancellation flip decoding of polar codes based on error distribution[C]//Proceedings of IEEE Wireless Communication Networking Conference.Barcelona, Spain:IEEE Press, 2018:19-24. [18] LI S B, DENG Y Q, GAO X, et al.Generalized segmented bit-flipping scheme for successive cancellation decoding of polar codes with cyclic redundancy check[J].IEEE Access, 2019, 7:8324-83436. [19] PETER T.Efficient design and decoding of polar codes[J].IEEE Transactions on Communications, 2012, 60(11):3221-3227. [20] HE G N, BELFIORE J C, LAND I, et al.Beta-expansion:a theoretical framework for fast and recursive construction of polar codes[C]//Proceedings of 2017 IEEE Communication Conference.Singapore, Republic of Singapore:IEEE Press, 2018:1-6. [21] MORI R, TANAKA T.Performance and construction of polar codes on symmetric binary-input memoryless channel[C]//Proceedings of IEEE International Sysposium on Information Theory.Seoul, South Korea:IEEE Press, 2012, 60(11):3221-3227. |