[1] WAND Niu-niu,AN Jian-cheng. Combining the optimal
threshold method and the improved Freeman chain code
for lung parenchyma segmentation[J].Computer
Engineering & Scien-ce, 2020,42(06):1037-1042.
王妞妞,安建成.最佳阈值法结合改进的 Freeman 链码
的 肺 实 质 分 割 [J]. 计 算 机 工 程 与 科 学 ,
2020,42(06):1037-1042.
[2] Ronneberger O, Fischer P, Brox T, et al. U-Net:
convolutional networks for biomedical image
segmentation[C]//Proceedingsof the 18th International
Conference on Medical Image Computing and
Computer-Assisted Intervention, Munich, Oct 5-9, 2015.
Cham: Springer, 2015: 234-241
[3] Milletari F, Navab N, Ahmadi S A. V- Net: fully
convolutionalneural networks for volumetric medical
image segmentation[C]//Proceedings of the 4th
International Conferenceon 3D Vision, Stanford, Oct
25-28, 2016. Washington: IEEE Computer Society,
2016: 565-571.
[4] ZHANG Qianwen , CHEN Ming , QIN Yufang, CHEN
Xi. Lung nodule segmentation based on 3D ResUnet
network[J]. Chinese Journal of Medical
Physics ,2019,36(11):1356-1361.
张倩雯,陈明,秦玉芳,陈希.基于 3D ResUnet 网络的肺
结 节 分 割 [J]. 中 国 医 学 物 理 学 杂
志,2019,36(11):1356-1361.
[5] WANG Pan, QIANG Yan, Yang Xiao-tang, HOU
Teng-xuan. Double Attention 3D-UNet for Lung Nodule
Segmentation[J/OL]. Computer
Engin-eering:1-10[2020-12-18].https://doi.org/10.196-78/j.issn.1000-3428.0057019.
王磐,强彦,杨晓棠,侯腾璇.双注意力 3D-UNet 肺结节
分 割 网 络 [J/OL]. 计 算 机 工 程 :1-10[2020-12-18].
https://doi.org/10.19678/j.issn.-1000-3428.0057019.
[6] GAO Zhiyong ,HUANG Jinzhen,DU Chenggang.
Pulmonary nodule detection based on feature pyramid
networks.[J]. Journal of Computer Applications,
2020,46-(03):267-272+279.
高智勇,黄金镇,杜程刚.基于特征金字塔网络的肺结
节检测[J].计算机应用,2020,40 (09):25-71-2576.
[7] ZHANG Huahai , BAI Peirui , GUO Ziyang , DU
Linghao , LI Chang , REN Yande , YANG Kai , LIU
Qingyi. An algorithm for three-dimensional plumonary
parenchymal segmentation by integ-rating surfacelet
transform with pulse coupled neural network[J]. Journal
of Biomedical Engi-neering,2020,37(04):630-640.
张华海,白培瑞,郭子杨,杜令豪,李昶,任延德,杨凯,刘
庆一.一种融合表面波变换与脉冲耦合神经网络的三
维 肺 实 质 分 割 算 法 [J]. 生 物 医 学 工 程 学 杂
志,2020,37(04):630-640.
[8] QIAN B X, XIAO Z Y, SONG W. Application of
improved convolutional neural network in lung image
segmentation[J]. Journal of Frontiers of Computer
Science and Technology, 2020, 14(8): 1358-1367.
钱宝鑫,肖志勇,宋威.改进的卷积神经网络在肺部图
像 上 的 分 割 应 用 [J]. 计 算 机 科 学 与 探
索,2020,14(08):1358-1367.
[9] Gu Z , Cheng J , Fu H , et al. CE-Net: Context Encoder
Network for 2D Medical Image Segmentation[J]. IEEE
Transactions on Medical Imaging, 2019:1-1.
[10] DAI J F, QI H Z XIONG Y W. Deformable
convolutional networks [C]// Proceedings of the IEEE
International Conference on Computer Vision. Venice
Italy: IEEE, 2017: 764-773
[11] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji,
Zhuowen Tu, and Philip Torr. Deeply supervised salient
object detection with short connections. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5300–5309, 2017.
[12] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, Yichen Wei, et al. Circle
Loss: A Unified Perspective of Pair Similarity
Optimization[C]// arXiv, 2020.
[13] Z.W. Zhou, M.M.R. Siddiquee, N. Tajbakhsh and J.M.
Liang,“UNet++: A Nested U-Net Architect-ure for
Medical Image Segmentation,” Deep Learning in
Medical Image Anylysis and Multimodal Learning for
Clinical Decision Support, pp: 3-11,2018.
[14] Gu Z , Cheng J , Fu H , et al. CE-Net: Context Encoder
Network for 2D Medical Image Segmentation[J]. IEEE
Transactions on Medical Imaging, 2019:1-1.
[15] Qin X , Zhang Z , Huang C , et al. U 2 -Net: Going
Deeper with Nested U-Structure for Salient Object
Detection[J]. Pattern Recognition, 2020, 106:107404.
[16] Huang H , Lin L , Tong R , et al. UNet 3+: A Full-Scale
Connected UNet for Medical Image Segmentation[C]//
arXiv, 2020.
[17] J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N.-M.
Tan, D. Tao,C.-Y. Cheng, T.Aung, and T. Y. Wong,
“Superpixel classification based optic disc and optic cup
segmentation for glaucoma screening,” IEEE
Transactions on Medical Imaging, vol. 32, no. 6, pp.
1019–1032, 2013
[18] Geng L, Zhang S Q, Tong J, et al. Lung segmentation
method with dilated convolution based on VGG-16
network[J]. Computer Assisted Surgery, 2019, 24:
27-33.
[19] WU Yuchao , LIN Lan , WANG Jingxuan , WU Shuicai.
Application of semantic segmentation based on
convolutional neural network in medical images[J].
Journal of Biomedical Engineering,
2020,37(03):533-540.
吴玉超,林岚,王婧璇,吴水才.基于卷积神经网络的语
义分割在医学图像中的应用[J].生物医学工程学杂
志,2020,37(03):533-540.
[20] Shuchao Pang, Zhezhou Yu, and Mehmet A. Orgun. A
novel end-to-end classifier using domain transferred
deep convolutional neural networks for biomedical
images. Computer Methods and Programs in
Biomedicine, 140:283–293, 2017.
doi:10.1016/J.CMPB.201-6.12.019.
[21] L-C. Chen, Y.K. Zhu, G. Papandreou and H. Adam,
“Encoder-decoder with atrous separable convolution for
semantic imagesegmentation,” Proceedings of the
European Conference on Computer Vision, 2018.
|