张锡英, 孙守东, 于海浩, 边继龙
录用日期: 2023-11-14
[1] GALLIANI S, LASINGER K, SCHINDLERK. Massi-
vely parallel multi view stereopsis by surface normal
diffusion[C]//Proceedings of the IEEE International C
-onference on Computer Vision. Boston, USA: IEEE P
-ress, 2015: 873-881.
[2] XU Q, KONG W, TAO W, et al. Multi-Scale Geom-
etric Consistency Guided and Planar Prior Assisted
Multi View Stereo[J]. IEEE Transactions on Patt-
ern Analysis and Machine Intelligence, 2022, 16(3):3
6-45.
[3] 尹晨阳,职恒辉,李慧斌. 基于深度学习的双目立体匹
配方法综述[J]. 计算机工程,2022,48(10):1-12.YIN
C Y,ZHI H H,LI H B. Survey of binocular s-tereo-
matching methods based on deep learning[J]. C-ompu
ter Engineering,2022,48(10):1-12. (in Chine-se)
[4] YAO Y, LUO Z, LI S, et al. Mvsnet: Depth infere-
nce for unstructured multi-view stereo[C]//Proceedin-
gs ofthe European conference on computer vision (E-
CCV). Salt Lake City, USA: IEEE Press, 2018: 767-
783.
[5] GU X, FAN Z, ZHU S, et al. Cascade cost volume
for high-resolution multi-view stereo and stereo matc-
hing[C]//Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. Washington
D.C. , USA: IEEE Press, 2020: 2495-2504.
[6] 刘会杰,柏正尧,程威,李俊杰,许祝. 融合注意力机
制和多层 U-Net 的多视图立体重建[J]. 中国图象图形
学报,2022,27(02):0475-0485.LIU H J,BAI Z Y,
CHENG W,et al. Fusion atte-ntion mechanism and
multilayer U-Net for multiviewstereo. Journal of Ima
ge and Graphics,2022,27(02):0475-0485. (in Chin
ese)
[7] YANG J, MAO W, ALVAREZ J M, et al. Cost volu
-me pyramid based depth inference for multi-view ste
-reo[C]//Proceedings of the IEEE/CVF Conferenceon C
-omputer Vision and Pattern Recognition. Washington
D.C.,USA: IEEE Press, 2020: 4877-4886.
[8] GAO S, LI Z, WANG Z. Cost Volume Pyramid Net-
work with Multi-strategies Range Searching for Multi
-view Stereo[J].Springer, 2022, 10(2): 157-169.
[9] CHENG S, XU Z, ZHU S, et al. Deep stereo using
adaptive thin volume representation with uncertainty a-
wareness[C]//Proceedings of the IEEE/CVF Conferenc-
e on Computer Vision and Pattern Recognition. Was-
hington D.C. , USA: IEEE Press, 2020: 2524-2534.
[10] 李剑,陈宇航. 一种多视角高精度图片的深度估计方法
[J]. 北京邮电大学学报(自科版),2021,44(5):101-10
6.LI J,CHEN Y H.A depth estimation method for m
u-lti view and high precision images[J]. Journal of B
ei-jing University of Posts and Telecommunications,2
021, 44(5):101-106. (in Chinese)
[11] CAO C, REN X, FU Y. MVSFormer: Multi-View St-
ereo with Pre-trained Vision Transformers and Tempe-
rature-based Depth[EB/OL]. [2022-12-16]. https://arxiv.
org/abs/2208. 02541.
[12] LUO X., XIE, Y. FFP-MVSNet: Feature Fusion Base
-d Patchmatch for Multi-view Stereo[C]//Communicati-
ons Signal Processing and Systems. Berlin, Germany:
Springer, 2022: 167-173
[13] YU Z, GAO S. Fast-mvsnet: Sparse-to-dense multi-vi-
ew stereo with learned propagation and gauss-newton
refinement[C]//Proceedings of the IEEE/CVF Confere-
nceon Computer Vision and Pattern Recognition. Wa-shington D.C. , USA: IEEE Press, 2020: 1949-1958.
[14] PENG R, WANG R, WANG Z, et al. Rethinking De
-pth Estimation for Multi-View Stereo: A Unified Re
p-resentation. Proceedings of the IEEE/CVF Conferen
c-e on Computer Vision and Pattern Recogni-tion. Ne
wOrleans, USA: IEEE Press, 2022: 8635-8644.
[15] YAO Y, LUO Z, LI S, et al. Recurrent mvsnet for h
-igh-resolution multi-view stereo depth inference[C]//P
-roceedings of the IEEE/CVF conference on compute
rvision and pattern recognition. Long Beach, USA: I
E-EE Press, 2019: 5525-5534.
[16] YANG J, ALVAREZ J M, LIU M. Non-parametric D-
epth Distribution Modelling based Depth Inference for
Multi-view Stereo[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion. New Orleans, USA: IEEE Press, 2022: 8626-86
34.
[17] 刘万军,王俊恺,曲海成. 多尺度代价体信息共享的多
视角立体重建网络[J]. 中国图象图形学报,2022,27(1
1):3331-3342.
LIU W J,WANG J K,QU H C. Multi-scale cost v
-olumes information sharing based multi-view stereo re
-constructed model. Journal of Image and Graphics, 2
022,27(11):3331-3342. (in Chinese)
[18] BLEYER M, RHEMANN C, ROTHER C. Patchmatc-
h stereo-stereo matching with slanted support windo-
ws[C]//Proceedings of the British Machine Vision C-
onference. Britain, UK: IEEE Press, 2011: 1-11.
[19] LI C, ZHOU A, YAO A. Omni-dimensional dynam-
ic convolution[J]. Acta Optica Sinica, 2022, 1(2): 169
-181.
[20] CHENG X, WANG P, YANG R. Depth estimation v-
ia affinity learned with convolutional spatial propagat-
ion network[C]//Proceedings of the European Confere-
nce on Computer Vision (ECCV). Munich, Germany:
Springer Press, 2018: 103-119.
[21] AANAES H, JENSEN R R, VOGIATZIS G, et al. L-
arge-scale data for multiple-view stereopsis[J]. Intern-
ational Journal of Computer Vision, 2016, 120(5): 15
3-168.
[22] KNAPITSCH A, PARK J, ZHOU Q Y, et al. Tanks
and temples: Benchmarking large-scale scene reconstr-
uction[J]. ACM Transactions on Graphics (ToG) 2017,
36(4): 1-13.
[23] YAO Y, LUO Z, LI S, et al. Blendedmvs: A large-s-
cale dataset for generalized multi-view stereo netwo-
rks[C]//Proceedings of the IEEE/CVF Conference on C-
omputer Vision and Pattern Recognition. Washington
D.C. , USA: IEEE Press, 2020: 1790-1799.
[24] PASZKE A, GROSS S, CHINTALA S, et al. Autom-
atic differentiation in pytorch[J]. Automatic different-
iation in PyTorch, 2017, 8(2): 458-465.
[25] FURUKAWA Y, PONCE J. Accurate Dense and Ro-
bust Multi-view Stereopsis[J]. Pattern Analysis and M-
achine Intelligence, 2010, 32(8): 1362-1376.
[26] SCHONBERGER J L, FRAHM J M. Structure-from-
motion revisited[C]//Proceedings of the IEEE confere-
nce on computer vision and pattern recognition. Las
Vegas, USA: IEEE Press, 2016: 4104-4113.
[27] YU A, GUO W, LIU B, et al. Attention aware cost
volume pyramid based multi-view stereo network for
3d reconstruction[J]. ISPRS Journal of Photogrammet-
ryand Remote Sensing, 2021, 175(6): 448-460.
[28] WANG F, GALLIANI S, VOGEL C, et al. Patch-
matchnet: Learned multi-view patchmatch stereo[C]//P-
roceedings of the IEEE/CVF Conference on Compute-
r Vision and Pattern Recognition. Nashville, USA: I-
EEE Press, 2021: 14194-14203.
[29] XU Q, OSWALD M R, TAO W, et al. Non-local re-
current regularization networks for multi-view stereo
[J]. IEEE Access, 2021, 6(8): 132586-132597.
[30] WEILHARTER R, FRAUNDORFER F. ATLAS-MVS
Net: Attention Layers for Feature Extraction and Cost
Volume Regularization in Multi-View Stereo[C]//2022
26th International Conference on Pattern Recognition
(ICPR).New Orleans, USA: IEEE Press, 2022: 3557-3
563.
[31] MA X, GONG Y, WANG Q, et al. EPP-MVSNet: E-
pipolar-assembling based depth prediction for multi-v-
iewstereo[C]//Proceedings of the IEEE/CVF Internati-
onal Conference on Computer Vision. Nashville, USA:
IEEE Press, 2021: 5732-5740.
[32] WANG L, GONG Y, MA X, et al. IS-MVSNet: Imp-
ortance Sampling-Based MVSNet[C]//Computer Vision
ECCV 2022: 17th European Conference. Cham, Swit-
zerland: Springer Press, 2022: 668-683.
[33] WANG F, GALLIANI S, VOGEL C, et al. IterMVS:
iterative probability estimation for efficient multi-vie-wstereo[C]//Proceedings of the IEEE/CVF Conferen-
ceon Computer Vision and Pattern Recognition. New
Orleans, USA: IEEE Press, 2022: 8606-8615.
[34] XI J, SHI Y, WANG Y, et al. Raymvsnet:Learning
ray-based 1d implicit fields for accurate multi-view s-
tereo[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. New Orle-
ans, USA: IEEE Press, 2022: 8595-8605.
[35] ZHANG X D, YANG F Z, CHANG M, et al. MG-
MVSNet: Multiple granularities feature fusion network
for multi-view stereo[J]. Neurocomputing, 2023, 528
(1): 35-47
[36] LUO K, GUAN T, JU L, et al. P-mvsnet: Learning
patch-wise matching confidence aggregation for multi-
view stereo[C]//Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. Long Beach,
USA: IEEE Press, 2019: 10452-10461.
[37] CHEN R, HAN S, XU J, et al. Visibility-aware poi-
nt-based multi-view stereo network[J]. IEEE transact-
ionson pattern analysis and machine intelligence, 202
0, 43(10): 3695-3708.