[1] O’day S. Metrics for Intelligent Autonomy[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2004.
[2] Zadeh L A. The Search for Metrics of Intelligence——A Critical View[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2000.
[3] Bien Z, Kim Y T. How to Measure the Machine Intelligence Quotient(MIQ): Two Methods and Applications[C]//Proc. of the World Automation Congress. Anchorage, Alaska, USA: [s. n.], 1998.
[4] Huang Huimin. Autonomy Levels for Unmanned Systems(ALF US) Framework: Safety and Application Issues[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2007.
[5] Evans J M. Definitions and Measures of Intelligence in Deep Blue and the Army XUV[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2007.
[6] Dufourd D, Dalgalarrondo A. Results and Lessons Learned from the Quantitative Evaluation of Road Detection and Tracking Algorithms[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2003.
[7] Shirkhodaie A, Amrani R, Chawla N. Traversable Terrain Model- ing and Performance Measurement of Mobile Robots[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2004.
[8] Nau D, Ghallab M. Measuring the Performance of Automated Planning Systems[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2004.
[9] Shneier M, Shackleford W, Tsai H. Performance Evaluation of a Terrain Traversability Learning Algorithm in the DARPA LAGR Program[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2006.
[10] Wagan A I, Godi A, Li Xiaolan. Map Quality Assessment[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2008.
[11] Censi A. The Role of Bayesian Bounds in Comparing SLAM Algorithms Performance[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2008.
[12] James C S. Reliability Estimation and Confidence Regions from Subsystem and Full System Tests via Maximum Likelihood[C]// Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2008.
[13] Scrapper C, Balakirsky S, Weiss B. Autonomous Road Driving Arenas for Performance Evaluation[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2004.
[14] Schlenoff C, Ajot J, Madhavan R. PRIDE: A Framework for Performance Evaluation of Intelligent Vehicles in Dynamic, On-road Environments[C]//Proc. of the Performance Metrics for Intelligent Systems Workshop. Gaithersburg, Maryland, USA: [s. n.], 2007.
[15] Goyat Y, Chateau T, Malaterre L. Vehicle Trajectories Evaluation by Static Video Sensors[C]//Proc. of Intelligent Transportation Systems Conference. Toronto, Canada: [s. n.], 2006.
[16] Sutton R S, Barto A G. Reinforcement Learning: An Introduc- tion[M]. Cambridge, USA: The MIT Press, 1993.
[17] Ng A Y, Russell S. Algorithms for Inverse Reinforcement Learning[C]//Proc. of the 17th International Conference on Machine Learning. San Francisco, USA: [s. n.], 2000.
[18] Abbeel P, Ng A Y. Apprenticeship Learning via Inverse Reinforcement Learning[C]//Proc. of the 21st International Conference on Machine Learning. Alberta, Canada: [s. n.], 2004.
[19] Abbeel P, Coates A, Quigley M. An Application of Reinforcement Learning to Aerobatic Helicopter Flight[C]//Proc. of the 20th Annual Conference on Neural Information Processing Systems. Vancouver, Canada: [s. n.], 2007.
[20] Abbeel P, Dolgov D, Ng A Y. Apprenticeship Learning for Motion Planning with Application to Parking Lot Navigation[C]//Proc. of the International Conference on Intelligent Robots and Systems. Nice, France: [s. n.], 2008.
[21] Kolter J Z, Abbeel P, Ng A Y. Hierarchical Apprenticeship Learning with Applications to Quadruped Locomotion[C]//Proc. of the 21st Annual Conference on Neural Information Processing Systems. Vancouver, Canada: [s. n.], 2007.
[22] Ratliff N D, J. Bagnell A. Maximum Margin Planning[C]//Proc. of the 23rd International Conference on Machine Learning. Pittsburgh, USA: [s. n.], 2006.
[23] Syed U, Schapire R E. A Game-theoretic Approach to Apprenticeship Learning[C]//Proc. of NIPS’08. Vancouver, Canada: [s. n.], 2008.
[24] Syed U, Bowling M, Schapire R E. Apprenticeship Learning Using Linear Programming[C]//Proc. of the 25th International Conference on Machine Learning. Helsinki, Finland: [s. n.], 2008.
[25] Ramachandran D, Amir E. Bayesian Inverse Reinforcement Learning[C]//Proc. of the 20th International Joint Conference on Artificial Intelligence. Hyderabad, India: [s. n.], 2007.
[26] Ziebart B D, Maas A, Bagnell J, et al. Maximum Entropy Inverse Reinforcement Learning[C]//Proc. of AAAI’08. Chicago, USA: [s. n.], 2008.
[27] Neu G, Szepesvari C. Apprenticeship Learning Using Inverse Reinforcement Learning and Gradient Methods[C]//Proc. of the 23rd Conference Annual Conference on Uncertainty in Artificial Intelligence. Vancouver, Canada: [s. n.], 2007.
[28] Ng A Y, Harada D, Russell S. Policy Invariance Under Reward Transformations: Theory and Application to Reward Shaping[C]// Proc. of the 16th International Conference on Machine Learning. Bled, Slovenia: [s. n.], 1999.
|