1 |
JALODIA N, HENNA S, DAVY A. Deep reinforcement learning for topology-aware VNF resource prediction in NFV environments[C]//Proceedings of IEEE Conference on Network Function Virtualization and Software Defined Networks. Washington D. C., USA: IEEE Press, 2020: 1-5.
|
2 |
SUN S L, KADOCH M, GONG L, et al. Integrating network function virtualization with SDR and SDN for 4G/5G networks. IEEE Network, 2015, 29 (3): 54- 59.
doi: 10.1109/MNET.2015.7113226
|
3 |
ZHANG C, JOSHI H P, RILEY G F, et al. Towards a virtual network function research agenda: a systematic literature review of VNF design considerations. Journal of Network and Computer Applications, 2019, 146, 102417.
doi: 10.1016/j.jnca.2019.102417
|
4 |
ZHOU Y C, YU F R, CHEN J, et al. Resource allocation for information-centric virtualized heterogeneous networks with in-network caching and mobile edge computing. IEEE Transactions on Vehicular Technology, 2017, 66 (12): 11339- 11351.
doi: 10.1109/TVT.2017.2737028
|
5 |
|
6 |
LAGHRISSI A, TALEB T. A survey on the placement of virtual resources and virtual network functions. IEEE Communications Surveys & Tutorials, 2019, 21 (2): 1409- 1434.
|
7 |
PEI J N, HONG P L, PAN M, et al. Optimal VNF placement via deep reinforcement learning in SDN/NFV-enabled networks. IEEE Journal on Selected Areas in Communications, 2020, 38 (2): 263- 278.
doi: 10.1109/JSAC.2019.2959181
|
8 |
ASGARIAN M, MIRJALILY G, LUO Z Q. Trade-off between efficiency and complexity in multi-stage embedding of multicast VNF service chains. IEEE Communications Letters, 2022, 26 (2): 429- 433.
doi: 10.1109/LCOMM.2021.3132134
|
9 |
BORSATTI D, CERRONI W, DAVOLI G, et al. Intent-based service function chaining on ETSI NFV platforms[C]//Proceedings of the 10th International Conference on Networks of the Future. Washington D. C., USA: IEEE Press, 2020: 144-146.
|
10 |
SCHNEIDER S, QARAWLUS H, KARL H. Distributed online service coordination using deep reinforcement learning[C]//Proceedings of the 41st IEEE International Conference on Distributed Computing Systems. Washington D. C., USA: IEEE Press, 2021: 539-549.
|
11 |
YAN Z X, GE J G, WU Y L, et al. Automatic virtual network embedding: a deep reinforcement learning approach with graph convolutional networks. IEEE Journal on Selected Areas in Communications, 2020, 38 (6): 1040- 1057.
doi: 10.1109/JSAC.2020.2986662
|
12 |
MOHAMAD A, HASSANEIN H S. On demonstrating the gain of SFC placement with VNF sharing at the edge[C]//Proceedings of IEEE Global Communications Conference. Washington D. C., USA: IEEE Press, 2020: 1-6.
|
13 |
|
14 |
BEN JEMAA F, PUJOLLE G, PARIENTE M. QoS-aware VNF placement optimization in edge-central carrier cloud architecture[C]//Proceedings of IEEE Global Communications Conference. Washington D. C., USA: IEEE Press, 2017: 1-7.
|
15 |
SANG Y, JI B, GUPTA G R, et al. Provably efficient algorithms for joint placement and allocation of virtual network functions[C]//Proceedings of IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2017: 1-9.
|
16 |
SHI R Y, ZHANG J, CHU W J, et al. MDP and machine learning-based cost-optimization of dynamic resource allocation for network function virtualization[C]//Proceedings of IEEE International Conference on Services Computing. Washington D. C., USA: IEEE Press, 2015: 65-73.
|
17 |
袁泉, 汤红波, 黄开枝, 等. 基于Q-learning算法的vEPC虚拟网络功能部署方法. 通信学报, 2017, 38 (8): 172- 182.
URL
|
|
YUAN Q, TANG H B, HUANG K Z, et al. Deployment method for vEPC virtualized network function via Q-learning. Journal on Communications, 2017, 38 (8): 172- 182.
URL
|
18 |
ZHANG Z Y, MA L, LEUNG K K, et al. Q-placement: reinforcement-learning-based service placement in software-defined networks[C]//Proceedings of the 38th IEEE International Conference on Distributed Computing Systems. Washington D. C., USA: IEEE Press, 2018: 1527-1532.
|
19 |
YANG Z Y, MEI H B, WANG W Y, et al. Joint resource allocation for emotional 5G IoT systems using deep reinforcement learning. International Journal of Machine Learning and Cybernetics, 2021, 12 (12): 3517- 3528.
doi: 10.1007/s13042-021-01398-2
|
20 |
SCHNEIDER S, MANZOOR A, QARAWLUS H, et al. Self-driving network and service coordination using deep reinforcement learning[C]//Proceedings of the 16th International Conference on Network and Service Management. Washington D. C., USA: IEEE Press, 2020: 1-9.
|
21 |
|
22 |
GU L, ZENG D Z, LI W, et al. Intelligent VNF orchestration and flow scheduling via model-assisted deep reinforcement learning. IEEE Journal on Selected Areas in Communications, 2020, 38 (2): 279- 291.
doi: 10.1109/JSAC.2019.2959182
|
23 |
XU Z Y, TANG J, MENG J S, et al. Experience-driven networking: a deep reinforcement learning based approach[C]//Proceedings of IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2018: 1871-1879.
|
24 |
SCHNEIDER S, DIETRICH KLENNER L, KARL H. Every node for itself: fully distributed service coordination[C]//Proceedings of the 16th International Conference on Network and Service Management. Washington D. C., USA: IEEE Press, 2020: 1-9.
|
25 |
|
26 |
|
27 |
KALMAN B L, KWASNY S C. Why tanh: choosing a sigmoidal function[C]//Proceedings of IJCNN International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2002: 578-581.
|