计算机工程

• 移动互联与通信技术 • 上一篇    下一篇

基于车载通信网络的节点协同频偏估计算法

刘 凯1,2,黄明和3,高智伟4   

  1. (1. 联创汽车电子有限公司,上海 201206;2. 上海汽车集团股份有限公司技术中心,上海 201804; 3. 江西师范大学软件学院,南昌 330022;4. 赛宝认证中心,广州 510610)
  • 收稿日期:2012-08-08 出版日期:2013-10-15 发布日期:2013-10-14
  • 作者简介:刘 凯(1979-),男,工程师、博士,主研方向:车联网技术;黄明和(通讯作者),教授;高智伟,工程师、博士
  • 基金项目:
    江西省教育厅科技基金资助项目(GJJ11383)

Node Cooperative Frequency Offset Estimation Algorithm Based on Vehicular Communication Network

LIU Kai 1,2, HUANG Ming-he 3, GAO Zhi-wei 4   

  1. (1. DIAS Automotive Electronic Systems Co., Ltd., Shanghai 201206, China; 2. Technology Center, Shanghai Automotive Industry Corporation, Shanghai 201804, 3. School of Software, Jiangxi Normal University, Nanchang 330022, China; 4. CEPREI Certification Body, Guangzhou 510610, China)
  • Received:2012-08-08 Online:2013-10-15 Published:2013-10-14

摘要: 现有的4G网络频偏估计算法在高速车载环境下,存在较大的估计误差和较高的复杂度等问题。为此,提出一种基于多个车载节点协同工作的频偏估计算法。使用各节点强径的测量信噪比和角度特征进行加权估计,提高各协同节点频偏估计的准确度。对高速运动的OFDM系统进行蒙特卡洛仿真及对协同估计模型进行数值分析,结果表明,该算法能够有效改善LTE传输系统的误码率性能。

关键词: 车载通信网络, 正交频分复用, 频率偏移, 信道估计, 蒙特卡洛仿真

Abstract: Due to great carrier frequency deviation under high speed vehicular wireless environment in 4G network, the existing estimation algorithms perform ineffectively in terms of complexity and the estimated error. This paper proposes a dynamic cooperative frequency offset estimation algorithm. This estimation algorithm uses a weighted frequency offset estimation model for each receiver. The model not only allows for the weight of Signal to Interference plus Noise Ratio(SINR)but includes the weight of strong path signal. Monte-Carlo method is used to simulate the vehicular Orthogonal Frequency Division Multiplexing(OFDM) system. Numerical results of cooperation model are compared with conventional algorithms. Results show that the cooperative estimation algorithm can improve performance of error rate for Long Term Evolution(LTE) system.

Key words: vehicular communication network, Orthogonal Frequency Division Multiplexing(OFDM), frequency offset, channel estimation, Monte-Carlo simulation

中图分类号: