[1] LU L, LI G Y, SWINDLEHURST A L, et al. An over-view of massive MIMO:benefits and challenges[J].IEEE Journal of Selected Topics in Signal Processing,2014,8(5):742-758. [2] HAN S F, CHIH-LIN I, XU Z K, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G[J]. IEEE Communications Magazine, 2015, 53(1):186-194. [3] LIU Y, LI Q, MENG F, et al. Model-driven deep learning based channel estimation for HPO-MIMO[C]//Proceedings of the 15th International Congress on Image and Signal Processing,BioMedical Engineering and Informations. Washington D.C.,USA:IEEE Press,2022:1-5. [4] 罗皓, 于秀兰, 张祖凡, 等. 5G毫米波信道估计研究综述[J]. 电讯技术, 2021, 61(2):254-262. LUO H, YU X L, ZHANG Z F, et al. Channel estimation for 5G mmWave communications systems:a survey[J]. Telecommunication Engineering, 2021, 61(2):254-262.(in Chinese) [5] AI B, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020, 108(6):856-893. [6] ZENG Y, ZHANG R, CHEN Z N. Electromagnetic lens-focusing antenna enabled massive MIMO:performance improvement and cost reduction[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6):1194-1206. [7] RIADI A, BOULOUIRD M, HASSANI M M. Performance of massive-MIMO OFDM system with M-QAM modulation based on LS channel estimation[C]//Proceedings of International Conference on Advanced Systems and Emergent Technologies. Washington D.C.,USA:IEEE Press,2019:74-78. [8] LI K,SONG X,AHMAD M O,et al.An improved multicell MMSE channel estimation in a massive MIMO system[J].International Journal of Antennas and Propagation,2014,6(2):1-9. [9] YANG L, ZENG Y, ZHANG R. Channel estimation for millimeter-wave MIMO communications with lens antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4):3239-3251. [10] ALKHATEEB A, AYACH O E, LEUS G, et al.Channel estimation and hybrid precoding for millimeter wave cellular systems[J]. IEEE Journal of Selected Topics in Signal Processing,2014,8(5):831-846. [11] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2):1094-1121. [12] NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):310-316. [13] WANG J, KWON S, SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12):6202-6216. [14] 范馨月, 苏艳涛, 周非. 一种低复杂度稀疏信道估计算法[J]. 计算机工程, 2016, 42(11):120-124, 130. FAN X Y, SU Y T, ZHOU F. A low-complexity sparse channel estimation algorithm[J]. Computer Engineering, 2016, 42(11):120-124, 130.(in Chinese) [15] ZOU X B, LI F W, FANG J, et al. Computationally efficient sparse Bayesian learning via generalized approximate message passing[C]//Proceedings of IEEE International Conference on Ubiquitous Wireless Broadband. Washington D.C.,USA:IEEE Press,2016:1-4. [16] 廖勇, 李雪, 王幕熙, 等. 基于深度学习的信道估计技术研究进展[J]. 电讯技术, 2023, 63(10):1642-1650. LIAO Y, LI X, WANG M X, et al. Research progress of channel estimation based on deep learning technology[J]. Telecommunication Engineering, 2023, 63(10):1642-1650.(in Chinese) [17] DONG P H, ZHANG H, LI G Y, et al. Deep CNN-based channel estimation for mmWave massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(5):989-1000. [18] 黄源, 何怡刚, 吴裕庭, 等. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021, 42(8):61-69. HUANG Y, HE Y G, WU Y T, et al. Deep learning for compressed sensing based sparse channel estimation in FDD massive MIMO systems[J]. Journal on Communications, 2021, 42(8):61-69.(in Chinese) [19] MA X S, GAO Z, GAO F F, et al. Model-driven deep learning based channel estimation and feedback for millimeter-wave massive hybrid MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8):2388-2406. [20] BORGERDING M, SCHNITER P, RANGAN S. AMP-inspired deep networks for sparse linear inverse problems[J]. IEEE Transactions on Signal Processing, 2017, 65(16):4293-4308. [21] HE H T, WEN C K, JIN S, et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2018, 7(5):852-855. [22] WEI X H, HU C, DAI L L. Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems[J]. IEEE Transactions on Communications, 2021, 69(1):182-193. [23] ZHANG Y H, MU Y F, LIU Y, et al. Deep learning-based beamspace channel estimation in mmWave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(12):2212-2215. [24] WEI Y, ZHAO M M, ZHAO M J, et al. An AMP-based network with deep residual learning for mmWave beamspace channel estimation[J]. IEEE Wireless Communications Letters, 2019, 8(4):1289-1292. [25] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202. [26] GAO X Y, DAI L L, HAN S F, et al. Reliable beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array[J]. IEEE Transactions on Wireless Communications, 2017, 16(9):6010-6021. [27] EL AYACH O, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3):1499-1513. [28] 戴琼海, 付长军, 季向阳. 压缩感知研究[J]. 计算机学报, 2011, 34(3):3425-3434. DAI Q H, FU C J, JI X Y. Research on compressed sensing[J]. Chinese Journal of Computers, 2011, 34(3):3425-3434.(in Chinese) |