[1] PAWLAK Z. Rough sets[J]. International Journal of
Computer & Information Sciences, 1982, 11(5): 341-356.
[2] WANG G Q, LI T R, ZHANG P F, et al. Double-local
rough sets for efficient data mining[J]. Information
Sciences, 2021, 571: 475-498.
[3] 李抒音, 刘洋.权重模糊粗糙集的分类规则挖掘算法[J].
计算机工程, 2019,45( 9): 211-215.
LI S Y, LIU Y. Classification rule mining algorithm for
weighted fuzzy rough sets[J]. Computer Engineering,
2019, 45(9): 211-215.
[4] YAO W, ZHANG G, ZHOU C J. Real-valued hemimetricbased fuzzy rough sets and an application to contour
extraction of digital surfaces[J]. Fuzzy Sets and Systems,
2023, 459: 201-219.
[5] HU Q H, YU D, LIU J F, et al. Neighborhood rough set
based heterogeneous feature subset selection[J].
Information Sciences, 2008, 178(18): 3577-3594.
[6] ZHANG J B, LI T R, CHEN H M. Composite rough sets
for dynamic data mining[J]. Information Sciences, 2014,
257: 81-100.
[7] GUAN Y.Y, WANG H.K, Set-valued information
systems[J]. Information Sciences, 2006, 176(17): 2507–
2525.
[8] STEFANOWSKI J, TSOUKIAS A, On the extension of
rough sets under Incomplete Information. 1999.
[9] 王国胤. Rough 集理论在不完备信息系统中的扩充[J].
计算机研究与发展. 2002, 39(10):1238-1243.
WANG G Y. Extension of rough set under incomplete
information systems[[1] PAWLAK Z. Rough sets[J]. International Journal of
Computer & Information Sciences, 1982, 11(5): 341-356.
[10] KRYSZKIEWICZM M. Rough set approach to incomplete
information systems[J]. Information Sciences, 1998, 112:
39-49.
[11] WU Z J, WANG H, CHEN N, et al, Semi-monolayer
covering rough set on set-valued information systems and
its efficient computation[J]. Information Journal of
Approximate Reasoning. 2021, 130: 83-106.
[12] 孙妍, 米据生, 冯涛, 等. 变精度极大相容块粗糙集模型
及其属性约简[J]. 计算机科学与探索, 2020, 14(05): 892-
900.
SUN Y, MI J S, FENG T, et al. Maximum consistent block
based variable precision rough set model and attribute
reduction [J]. Journal of Frontiers of Computer Science and
[13] HAMED A, SOBHY A, NASSAR H. Distributed approach
for computing rough set approximations of big incomplete
information systems[J]. Information Sciences, 2021, 547:
427-449.
[14] ROHMAT S R, HAIRULNIZAM M, SHAHREEN K, et al.
A relative tolerance relation of rough set for incomplete
information system[C]//Proceedings of the 3rd
International Conference on Soft Computing and Data
Mining, Johor, February 6-8, 2018, 700: 72-81.
[15] DERIS M M, HAMID M A, NORAINI I, et al. Data
reduction using similarity class and enhanced tolerance
relation for complete and incomplete information
systems[C]//Proceedings of the 2019 10th International
Conference on Information and Communication Systems,
Irbid, June 11-13, 2019: 134-139.
[16] 杨璇, 马建敏, 赵曼君. 基于邻域互信息的高维时序数据
特征选择[J].计算机工程, 2023, 49(7): 135-142, 149.
YANG X, MA J M, ZHAO M J. Feature selection of highdimensional time-series data based on neighborhood
mutual information[J]. Computer Engineering, 2023, 49(7):
135-142, 149.
[17] XIA H, CHEN Z Z, WU Y M, et al. Attribute reduction
method based on improved granular ball neighborhood
rough set[C]//Proceedings of the 2022 IEEE 7th
International Conference on Cloud Computing and Big
Data Analytics, Chengdu, April 22-24, 2022: 13-16.
[18] 危前进, 魏继鹏, 古天龙, 等. 粗糙集多目标并行属性约
简算法[J]. 软件学报, 2022, 33(7): 2599-2617
WEI Q J, WEI J P, GU T L, et al. Multi-objective parallel
attribute reduction algorithm in rough set[J]. Journal of
Software, 2022, 33(7): 2599-2617.
[19] ZHANG J B, WONG J ,0001 PAN Y, et al. A Parallel
Matrix-Based Method for Computing Approximations in
Incomplete Information Systems[J]. IEEE Trans.
Knowledge. Data Eng, 2015, 27(2): 326-339.
[20] FARYAL N, USMAN Q, SUMMAIR M R. A parallel
rule-based approach to compute rough approximations of
dominance based rough set theory [J]. Engineering
Applications of Artificial Intelligence, 2022, 115.
[21] RAZA S M, QAMAR U. A parallel approach to calculate
lower and upper approximations in dominance based
rough set theory[J]. Applied Soft Computing Journal,
2019, 84: 105699-105699.
[22] 倪鹏, 刘阳明, 赵素云, 等. 动态模糊粗糙特征选取算法
[J].计算机科学与探索, 2020, 14(02): 236-243.
NI P, LIU Y M, ZHAO S Y, et al. Dynamic fuzzy rough
feature selection algorithm[J]. Journal of Frontiers of
Computer Science and Technology, 2020, 14(02): 236-243.
[23] ZHANG J B, ZHU Y, PAN Y, et al. Efficient parallel
Boolean matrix based algorithms for computing composite
rough set approximations[J]. Information Sciences, 2016,
329: 287-302.
[24] WU Z J, CHEN N, GAO Y. Semi-monolayer cover rough
set: concept, property and granular algorithm[J].
Information Sciences, 2018, 456: 97-112.
[25] JING S Y, LI G L, ZENG K, et al. Efficient parallel
algorithm for computing rough set approximation on
GPU[J]. Soft Computing, 2018, 22(22): 7553-7569.
[26] GAO Y, LV C W, WU Z J. Attribute reduction of boolean
matrix in neighborhood rough set model[J]. International
Journal of Computational Intelligence Systems, 2020,
13(1): 1473-.
[27] HU Y M, LI T R, HU J, et al. Parallel attribute reduction
algorithms based on CUDA[C]// International FLINS
Conference.2018.
[28] Nvidia.CUDA.Toolkit.Documentation.V11.1.0[EB/OL].
https://docs.nvidia.com/cuda/archive/11.1.0/
[29] CuPy.CuPy.API.Reference[EB/OL].
https://pypi.org/project/cupy-cuda111/10.3.1J]. Journal of Computer Research and
Development. 2002, 39(10):1238-1243.
|