[1]. BUCHMANN J, MAY A, VOLLMER U. Pers
pectives for cryptographic long-term security[J].
Communications of the ACM, 2006, 49(9): 5
0–55. [DOI: 10.1145/1151030.1151055]
[2]. SHOR P. Algorithms for quantum comput-ati
on: Discrete logarithms and factori-ng[C]. In:
Proceedings 35th AnnualSymposium on Found
ations of Computer Science. IEEE, 1994:124–
134. [DOI: 10.1109/SFCS.1994.365700]
[3]. LONG G L. Grover algorithm with zero theor
etical failure rate[J]. Physical Review A, 2001,
64(2): 436–454. [DOI:10.1103/PhysRevA.64.0
22307]
[4]. 沈诗羽,何峰,赵运磊.Aigis 密钥封装算法多平台
高效实现与优化[J].计算机研究与发展,2021,58
(10):2238-2252.SHEN S Y,HE F,ZHAO Y L.
Multi-Platform Efficient Implementation and O
ptimization of Aigis-enc Algorithm[J].Journal o
f Computer Research and Development.2021,5
8(10):2238-2252.[DOI:10.7544/issn1000-1239.20
21.20210617]
[5]. 周朕,何德彪,罗敏,等.紧凑的 Aigis-sig 数字签名
方案软硬件协同实现方法[J].网络与信息安全
学报,2021,7(2):64-76. Compact software/hardw
are co-design and implementation method of
Aigis-sig digital signature scheme[J].Chinese J
ournal of Network and Information Security.20
21,7(2):64-76.[DOI:10.11959/j.issn.2096-109x.20
21026]
[6]. BERNSTEIN D J. Introduction to post-quantu
m cryptography[C].In: Post-Quantum Cryptogra
phy. Springer Berlin Heidelberg, 2009: 1–14.
[DOI: 10.1007/978-3-540-88702-7_1]
[7]. MOODY D. Post-Quantum Cryptography Stan
dardization: Announcement and outline of NIS
T’s Call for Submissions[S]. 2016
[8]. AJTAI M. Generating hard instances of lattice
problems[C]. In: Proceedings of ACM Symp
osium on Theory of Computing. ACM, 1996:
99–108. [DOI: 10.1145/237814.237838]
[9]. AJTAI M, DWORK C. A public-key cryptosy
stem with worst-case/average-case equivalence
[C].In:Proceedings of ACM Symposium on Th
eory of Computing. ACM, 1997284–293. [DO
I: 10.1145/258533.258604]
[10].ARHOVEN T, MOSCA M, JOOP VDP. Findi
ng shortest lattice vectors faster using quantu
m search[J]. Designs, Codes and Cryptography,
2015, 77(2): 375–400. [DOI: 10.1007/s10623-
015-0067-5]
[11].LINDNER R, PEIKERT C. Better key sizes
(and attacks) for LWE-based encryption[C]. In:
Topics in Cryptology—CT-RSA 2011. Spring
er Berlin Heidelberg, 2011: 319–339. [DOI:10.
1007/978-3-642-19074-2_21]
[12].谢天元,李昊宇,朱熠铭,潘彦斌,刘珍,杨照民.Fat
Seal:一种基于格的高效签名算法.电子与信息
学报[J].2020,42(2):333-340.XIE T Y,LI H Y,Z
HU Y M,PAN Y B,LIU Z YANG Z M. FatS
eal: An Efficient Lattice-based Signature Algor
ithm[J].Journal of Electronics & Information T
echnology.2020,42(2):333-340.[DOI: 10.11999/J
EIT190678]
[13].冯超逸,赵一鸣.基于理想格的可证明安全数字
签名方案[J].计算机工程.2014,46(2):122-128.FE
NG Chaoyi,ZHAO Yiming. Ideal Lattice Base
d Justifiable Secure Digital Signature Scheme
[J]. Computer Engineering.2014,46(2):122-128.
[DOI:10.3969/j.issn.1000-3428.2017.05.017]
[14].赵宗渠,黄鹂娟,范涛,马少提.格上基于 KEM 的
认证密钥交换协议[J].计算机工程.2020,46(7):
122-128.ZHAO Z Q, HUANG L J, FAN T,
MA S T.KEM-based Authenticated Key Excha
nge Protocol on Lattice[J].Computer Engineeri
ng,2020,46(7):122-128.[DOI:10.19678/j.issn.100
0-3428.0055076]
[15].XU P, HU M, CHEN T, WANG W and JIN
H. LaF: Lattice-Based and Communication-effi
cient Federated Learning[J]. IEEE Transactions
on Information Forensics & Security,2022,17:
2483-2496.
[16].Pilaram, H,Eghlidos, T,Toluee, R. An efficient
lattice-based threshold signature scheme using
multi-stage secret sharing[J].IET INFORMATI
ON SECURITY.2021,15(1):98-106.[DOI:10.104
9/ISE2.12007]
[17].BRAKERSKI Z, GENTRY C, VAIKUNTANA
THAN V. (Leveled)Fully homomorphic encryp
tion without bootstrapping[J]. ACM Transactio
ns on Computation Theory, 2014, 6(3): 1–36.
[DOI: 10.1145/2633600]
[18].GENTRY C. Fully homomorphic encryption us
ing ideal lattices[C].Proceedings of ACM Sym
posium on Theory of Computing.ACM,2009:
169–178. [DOI: 10.1145/1536414. 1536440]
[19].GENTRY C, HALEVI S, NIGEL P. Homomor
phic evaluation of the AES circuit[C].Advance
s in Cryptology—CRYPTO 2012. Springer Be
rlin Heidelberg,2012:850–867.[DOI: 10.1007/97
8-3-642-32009-5_49] [20].Micciancio D,Regev O.Worst-case to average-c
ase reductions based on gaussian measures[J].
SIAM J.Comput.2007,37:267–302.[DOI:10.1109
/FOCS.2004.72]
[21].Oded Regev.On lattices, learning with errors, r
andom linear codes, and cryptography[M].Proc
eedings of the thirty-seventh annual ACM sy
mposium on Theory of computing.2005:84–93.
[22].KIM J.NTRU+: Compact Construction of NTR
U Using Simple Encoding Method[J]. IEEE T
ransactions on Information Forensics & Securi
ty,2023,18:4760-4774.
[23].FU Y,ZHAO X F.Research on Two-Party Coo
perative Aigis-sig Digital Signature Protocol. I
nternational Conference on Security and Priva
cy in New Computing Environments[J].2021.
[DOI: https://doi.org/10.1007/978-3-030-96791-8
_4]
[24].FU Y,ZHAO X F.A New Threshold Digital Si
gnature Protocol for Aigis-sig.密码学[J].2022,9
(5):872-882.[DOI:10.13868/j.cnki.jcr.000554]
[25].HU Y,DONG S,DONG X.Analysis on Aigis‐
Enc: Asymmetrical and symmetrical[J].IET Inf
ormation Security,2021,15(2):147-155.[DOI:http
s://doi.org/10.1049/ise2.12009]
|