作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (5): 10-12.

• 博士论文 • 上一篇    下一篇

无参数鲁棒线性规划支持向量机分类的牛顿法

宋 杰 1,2,唐焕文1   

  1. 1. 大连理工大学应用数学系, 大连 116024;2. 韶关学院数学系,韶关 512005
  • 出版日期:2006-03-05 发布日期:2006-03-05

Newton Method for Parameterless Robust Linear Programming Support Vector Machine Classification

SONG Jie 1,2, TANG Huanwen1   

  1. 1. Department of Applied Mathematics, Dalian University of Technology, Dalian 116024;2. Department of Mathematics, Shaoguan University, Shaoguan 512005
  • Online:2006-03-05 Published:2006-03-05

摘要: Mangasarian 最近提出的用于分类的无参数鲁棒线性规划支持向量机克服了标准支持向量机的一些缺点,而且模型简单,容易实现。该文讨论了这种新型支持向量机的线性规划问题的最小2-范数解,在此基础上给出了一个快速的牛顿算法。

关键词: 支持向量机;无参数鲁棒线性规划支持向量机;牛顿算法;分类

Abstract: Parameterless rubost linear programming support vector machine for classification, proposed by Mangasarian recently, avoids some shortcomings in standard SVM. Furthermore, its formulation is simple and easy to realize. This paper discusses the least 2-norm solution of the linear programming formulation of the new SVM, and proposes a fast Newton method for it

Key words: Support vector machine; Parameterless robust linear programming support vector machine; Newton algorithm; Classification