摘要: 提出了一种基于事务压缩和项目压缩的AprioriTid 优化算法。该算法的特点是:项目集采用关键字识别,同时对事务数据进行事务和项目压缩。从而省去了Apriori 算法和 AprioriTid 算法中的剪枝和模式匹配步骤,减小了扫描事务数据库的大小,提高了发现规则的效率。通过实验表明,优化的算法执行效率明显优于AprioriTid 算法。
关键词:
数据挖掘;关联规则;AprioriTid 算法;事务压缩;项目压缩
Abstract: This paper puts forward an optimizied algorithm which associates AprioriTid with transaction reduction and item reduction technique. Its characteristic is that the candidate set is adopted by the key word identifies, and at the same time transaction data is compressed by transaction and item. So the process of pruning and string pattern matching in AprioriTid and Apriori algorithm are removed, the size of scan transaction data base is decreased, and efficiency of find rules is improved. The testing result shows that the performance efficiency of optimized algorithm is obviously better than AprioriTid algorithm
Key words:
Data mining; Association rule; AprioriTid algorithm; Transaction reduction; Item reduction
彭仪普,熊拥军. 关联规则挖掘 AprioriTid 算法优化研究[J]. 计算机工程, 2006, 32(5): 55-57.
PENG Yipu, XIONG Yongjun. Study on Optimization of AprioriTid Algorithm for Mining Association Rules[J]. Computer Engineering, 2006, 32(5): 55-57.