摘要: 提出了一种在交通场景中鲁棒地检测运动车辆的方法,该方法采用改进的加权平均法进行实时背景学习,并根据统计量动态地计算出运动分割的阈值,以得到交通场景中的运动物体。与以往的方法相比,该方法在检测的成功率以及运算速度上均具有明显的优势
关键词:
视频处理;交通流量监测;背景学习;运动分割
Abstract: A method is presented to robustly detect the moving vehicles in traffic scenes. In the proposed method, the static background is subtracted in real-time with an improved weighted average algorithm. Then the threshold to do the segmentation is calculated dynamically,considering the variation of the illuminant. With such a dynamic local thresholds, moving objects are segmented by a differencing image scheme. Compared with the existed schemes, the proposed method performs better in recognition rates and the processing speed.
Key words:
Video process; Traffic flow surveillance; Background learning; Motion segmentation
谭晓军,沈 伟,郭志豪. 交通场景中运动分割问题的研究[J]. 计算机工程, 2006, 32(5): 169-171.
TAN Xiaojun, SHEN Wei, GUO Zhihao. Research of Motion Segmentation in Traffic Scenes[J]. Computer Engineering, 2006, 32(5): 169-171.