作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (7): 188-190.

• 人工智能及识别技术 • 上一篇    下一篇

基于多层前馈神经网络的案例推理系统

李建洋 1,2,郑汉垣2,刘慧婷1   

  1. 1. 合肥工业大学计算机网络所,合肥 230009;2. 龙岩学院计算机科学系,龙岩 364000
  • 出版日期:2006-04-05 发布日期:2006-04-05

Case-based Reasonor Based on Multi-layered Feedforward Neural Network

LI Jianyang1,2, ZHENG Hanyuan2, LIU Huiting1   

  1. 1. Institute of Computer Network, Hefei University of Technology, Hefei 230009;2. Department of Computer Science, Longyan University, Longyan 364000
  • Online:2006-04-05 Published:2006-04-05

摘要: 采用基于该神经网络技术的案例推理系统,使用交叉覆盖算法,可以有效地缩减案例的检索时间、减少案例适应性修改、提高推理效率。实验表明该系统易于设计构建,极大地提升了CBR 在实际中的应用能力。

关键词: CBR;集成系统;前馈神经网络;交叉覆盖算法

Abstract: This paper presents a CBR system based on multi-layered feedforward neural network and its alternative-covering algorithm, which can greatly decrease the time taken to perform case retrieval and matching. The experimental results indicate that the integrated technology can efficiently enhance the system performance, especially for the large-scale case-based reasoning, which can facilitate CBR system design and promote the capacity of applying CBR to real-world problem-solving.

Key words: Case-based reasoning; Hybrid system; Feedforward neural network; Alternative-covering algorithm