作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (10): 45-46,49.

• 软件技术与数据库 • 上一篇    下一篇

基于曙光 4000A 的BLAST 并行算法

谭光明 1,2,徐琳 1,2,周幼英3,冯圣中1,孙凝晖1   

  1. 1. 中国科学院计算技术研究所,北京 100080;2. 中国科学院研究生院,北京 100080;3. 浙江大学,杭州310028
  • 出版日期:2006-05-20 发布日期:2006-05-20

Exploiting Parallelization of BLAST on Dawning 4000A

TAN Guangming1,2, XU Lin1,2, ZHOU Youying3, FENG Shengzhong1, SUN Ninghu1   

  1. 1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080;2. Graduate School of Chinese Academy of Sciences, Beijing 100080; 3. Zhejiang University, Hangzhou 310028
  • Online:2006-05-20 Published:2006-05-20

摘要: 对BLAST 启发式算法的实现做了优化:引入批处理的概念、并对整个库文件建立哈希表,实现了I/O 延迟掩藏,提高了整个比对过程的速度,同时降低了内存消耗。优化的算法有利于并行化的实现:在并行系统中,将库文件广播到各个计算节点,由节点在局部分别建立哈希表。然后将查询文件分割发送到各个计算节点并行比对,计算结果可以在节点直接输出,不需要主结点收集,减少了通信开销。

关键词: BLAST;批处理;并行;集群;曙光4000A

Abstract: Through batch processing and building a database based hash table, optimized heuristic algorithm BLAST overlaps computation with I/O and speedup the process of alignment, besides it reduces the requirement of memory. Optimized BLAST is suitable to be parallelized. The whole database is broadcast to each computing node and database based hash tables are built. Then, query sequence segments are sent to each computing node and align with database in computing node. The cost of communication is reduced because the local alignment results are not necessary to be collected to sort.

Key words: BLAST; Batch processing; Parallel; Cluster; Dawning 4000A