摘要: 提出了一个通过建立段落向量空间模型,根据遗传算法进行文本主题划分的算法,解决了文章的篇章结构分析问题,使得多主题文章的文摘更具内容全面性与结构平衡性。实验结果表明,该算法对多主题文章的主题划分准确率为89.3%,对单主题文章的主题划分准确率为94.6%。
关键词:
自动文摘;向量空间模型;遗传算法;主题划分
Abstract: This paper establishes VSM for the whole article based on paragraph, then proposes an idea for multi-topic text partitioning based on GA. It solves the problem of chapter structural analysis in multi-topic article and makes the abstract of the multi-topic to have more general content and more balanced structure. The experiment on close test shows that the precision of topic partition for multi-topic text and single-topic text reaches 89.3% and 94.6% respectively.
Key words:
Automatic abstraction; Vector space model; Genetic algorithm(GA); Topic segmentation
傅间莲,陈群秀. 一种基于遗传算法的主题划分方法[J]. 计算机工程, 2006, 32(11): 209-210,218.
FU Jianlian,CHEN Qunxiu. Study on Topic Partition Based on Genetic Algorithm[J]. Computer Engineering, 2006, 32(11): 209-210,218.