作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (24): 189-191. doi: 10.3969/j.issn.1000-3428.2006.24.068

• 人工智能及识别技术 • 上一篇    下一篇

基于遗传-BP算法的FPN参数优化的研究

李 洋,乐晓波   

  1. (长沙理工大学计算机与通信工程学院,长沙 410076)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-12-20 发布日期:2006-12-20

Research of Parameters Optimization of Fuzzy Petri Nets Based on Genetic-BP Algorithm

LI Yang, YUE Xiaobo   

  1. (Insti. of Compu. & Commu. Engi., Changsha Univ. of Sci. & Tech., Changsha 410076)
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-12-20 Published:2006-12-20

摘要:

如何确定模糊产生式规则的各项参数对模糊Petri网(FPN)的建立意义重要,一直是尚未解决的难题。该文把遗传算法与BP算法相结合,引入到模糊Petri网的参数寻优过程,提出了一种基于二阶段的FPN模型的参数优化策略,该策略实现不依赖于经验数据,对初始输入无严格要求。仿真实例表明,经二阶段优化后训练出的参数正确率很高,且所得的FPN模型具有较强的泛化能力和自适应功能。

关键词: 模糊Petri网, 产生式规则, 模糊推理, 改进的遗传算法, BP算法

Abstract:

It is significant and being unsolved yet for building a fuzzy Petri net to determine all parameters of fuzzy production rules. Genetic algorithm combined with BP algorithm is originally introduced into the procedure of exploring parameters of FPN. An exploring strategy based on double-stage optimization is proposed. Realization of this strategy don’t depend on experiential data and requirements for primary input are not critical. Simulated experiment shows that the trained parameters gained from above strategy are highly accurate and the resultant FPN model owns strong generalmzing capability and self-adjustmeion purpose.

Key words: Fuzzy Petri nets(FPN), Production rule, Fuzzy reasoning, Improved genetic algorithm, BP algorithm