摘要: 为了解决基于遗传编程(GP)的动态系统进化设计过程中拓扑和参数协同优化的问题,讨论了基于GP的进化设计种群拓扑多样性保存策略,提出了一种拓扑适应值共享-拥挤协同搜索算法。该算法避免计算小生境半径、通过自适应适应度函数来惩罚拓扑子群,保证了拓扑多样性和阻止局部收敛的发生。实验结果表明,该算法保证了动态系统进化设计中拓扑和参数同步搜索的平衡,有效地克服了局部收敛,能确保获得理想的设计结果。
关键词:
遗传编程,
功率键合图,
进化设计,
拓扑搜索
Abstract: To achieve cooperative optimization of a genetic programming (GP)-based dynamic system between structure and parameter during the evolutionary design process, the diversity preservation strategy of evolutionary design topology population is discussed and a topology fitness-sharing & crowding cooperative search algorithm is proposed. This algorithm avoids calculate niche’s radius and punish the topology subgroup by self-adaptive fitness-function, thus the diversity of the topology is well preserved and convergence is prohibited. A case is employed to demonstrate the practicality of applying balanced topology and parameter search in evolutionary design of the dynamic system.
Key words:
genetic programming,
bond graphs,
evolutionary design,
topology search
中图分类号:
王 斌;刘德仿. 进化设计中拓扑搜索和参数的协同优化算法[J]. 计算机工程, 2007, 33(17): 202-203,.
WANG Bin; LIU De-fang. Cooperative Optimization Algorithm of Topology and Parameter Search in Evolutionary Design Process[J]. Computer Engineering, 2007, 33(17): 202-203,.