作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2009, Vol. 35 ›› Issue (6): 52-54.

• 软件技术与数据库 • 上一篇    下一篇

基于动态行为和模糊识别的Aspect挖掘方法

刘 引,曾 一,洪 媛,王海波,李 强,陈传超,吴光金,王 健   

  1. (重庆大学计算机学院,重庆 400044)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-03-20 发布日期:2009-03-20

Aspect Mining Method Based on Dynamic Behavior and Fuzzy Recognition

LIU Yin, ZENG Yi, HONG Yuan, WANG Hai-bo, LI Qiang, CHEN Chuan-Chao, WU Guang-jin, WANG Jian   

  1. (Department of Computer, Chongqing University, Chongqing 400044)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-03-20 Published:2009-03-20

摘要: 横切关注点是指分布在多个单元模块的功能代码,面向方面的编程是解决传统编程过程中横切问题的重要方法之一,其中一个重要问题是如何从现有系统中发现横切关注点。该文提出一种基于动态行为和模糊模式识别的Aspect挖掘方法,通过引入Aspect获取运行时方法调用的信息,使程序具有自动收集动态信息的能力,并利用模糊理论识别系统中的横切关注点。实验验证了该方法的有效性和实现的简洁性。

关键词: 面向方面编程, Aspect挖掘, 模糊模式识别

Abstract: Crosscutting concerns are functionalities that distribute in many modular units, and Aspect-oriented Programming(AOP) is one of the most effective methods to solve this problem. An important question in AOP is how to identify crosscutting concerns from object oriented legacy system. A method based on dynamic behavior and fuzzy pattern recognition for Aspect mining is presented. The method uses Aspect to capture the runtime method for calling information and providing the ability of auto-collecting dynamic information. It uses fuzzy pattern recognition to identify the crosscutting concerns. An experiment is conducted in order to verify the validity of the method. The implementation of this method is simple and succinct.

Key words: Aspect-oriented Programming(AOP), Aspect mining, fuzzy pattern recognition

中图分类号: