摘要: 根据聚类假设,提出一种新的基于图的半监督学习算法,称为密度敏感的半监督聚类。该算法引入一种密度敏感的距离测度,它能较好地反映聚类假设,并且充分挖掘了数据集中复杂的内在结构信息,同时与基于图的半监督学习方法相结合,使得算法在聚类性能上有了显著的提高。经过实验仿真进一步表明,该算法在特定图像应用上具有优越性。
关键词:
半监督聚类,
密度敏感,
聚类假设
Abstract: Based on clustering assumption, this paper proposes a novel semi-supervised learning algorithm based on graph, named Density- sensitive Semi-supervised Clustering(DS-SC). The approach introduces a density-sensitive distance measure which reflects the clustering assumption well and fully exploits the competitive inherent structure information among dataset, and combining it with a graph-based semi-supervised learning methods leads to prominent clustering performance enhance of DS-SC. The results demonstrate the superiority of DS-SC in the application of a specific image in the further simulation.
Key words:
semi-supervised clustering,
density-sensitive,
clustering assumption
中图分类号:
吴毓龙;袁平波. 密度敏感的距离测度在特定图像聚类中的应用[J]. 计算机工程, 2009, 35(6): 210-212.