作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (5): 207-209,212.

• 人工智能及识别技术 • 上一篇    下一篇

基于电阻网络的异构数据协同聚类算法

刘琰琼,张文生,李益群,杨 柳   

  1. (中国科学院自动化研究所,北京 100190)
  • 出版日期:2011-03-05 发布日期:2012-10-31
  • 作者简介:刘琰琼(1986-),男,硕士研究生,主研方向:数据挖掘,人工智能;张文生,研究员、博士生导师;李益群,硕士研究生;杨 柳,博士研究生
  • 基金资助:
    国家自然科学基金资助项目(90924026);国家“863”计划基金资助项目(2008AA01Z121, 2007AA01Z338)

Co-clustering Algorithm for Heterogeneous Data Based on Resistive Network

LIU Yan-qiong, ZHANG Wen-sheng, LI Yi-qun, YANG Liu   

  1. (Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China)
  • Online:2011-03-05 Published:2012-10-31

摘要: 传统聚类方法处理的是同构数据,无法满足异构数据同时聚类的应用需求,聚类结果的准确率较低,标签可读性较差。针对上述问题,提出一种基于电阻网络的异构数据协同聚类算法。该算法将异构关联数据抽象为多部图形式的电阻网络,进行特征计算及聚类。在对异构数据进行协同聚类后,可以得到一种聚类结构,其中每一类包含多种异构数据,它们之间可以互为标签,标签可读性高。实验结果证明,该方法是一种切实可行且效果优异的数据聚类算法。

关键词: 电阻网络, 异构数据, 协同聚类

Abstract: As traditional cluster methods focusing on the homogeneous data can not meet the need of simultaneous clustering of heterogeneous data, the precious is low, and the readability of the labels is poor, this paper presents a co-clustering algorithm for heterogeneous data based on resistive network. In the algorithm, the heterogeneous related data is transformed into a resistive network with multi-part graph structure for the following computing of eigenvalue and clustering. After co-clustering, a clustering result structure can be obtained, that in the structure one class includes multiple heterogeneous data which can be each other’s label, and the readability of the labels is high. Experimental results prove that the data clustering algorithm is achievable and effective.

Key words: resistive network, heterogeneous data, co-clustering

中图分类号: