作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (20): 38-10.

• 软件技术与数据库 • 上一篇    下一篇

k-匿名数据中的数据依赖问题研究

万 涛,刘国华   

  1. (东华大学计算机科学与技术学院,上海 201620)
  • 收稿日期:2011-12-27 修回日期:2012-02-20 出版日期:2012-10-20 发布日期:2012-10-17
  • 作者简介:万 涛(1986-),男,硕士研究生,主研方向:不确定性数据库;刘国华,教授、博士生导师、CCF会员
  • 基金资助:
    国家自然科学基金资助项目(61070032)

Research on Data Dependency Problem in k-anonymity Data

WAN Tao, LIU Guo-hua   

  1. (College of Computer Science and Technology, Donghua University, Shanghai 201620, China)
  • Received:2011-12-27 Revised:2012-02-20 Online:2012-10-20 Published:2012-10-17

摘要: k-匿名隐私保护模型在隐私保护过程中会产生大量k-匿名数据。为研究k-匿名数据中的数据依赖问题,提出一种扩展函数依赖,将经典函数依赖中的被决定属性取值相等这个条件进行扩展,使其取值来自于同一个指定集合。应用结果表明,该扩展函数依赖不仅包括经典函数依赖、垂直函数依赖、水平函数依赖、度量函数依赖的特性,而且可以从数据完整性的角度描述k-匿名数据的约束条件及指导k-匿名隐私保护模型中准标识符的选取。

关键词: k-匿名, 扩展函数依赖, 准标识符, 不确定数据, 完整性约束, 敏感属性

Abstract: The widely use of the k-anonymity privacy protection model in the privacy protection field yields has a large number of k-anonymity data. For researching on the data dependency in k-anonymity data, this paper defines an Extended Functional Dependencies(EFDs), which extends the value of the right properties get from the certain set, instead of the equality in classic function dependencies. Application result shows that EFDs not only covers classic functional dependency, horizontal function dependencies, and metric functional dependencies, but also can describe the constraints of the k-anonymity data from perspective of data integrity and instruct the selection of quasi-identifier in k-anonymity privacy protection model.

Key words: k-anonymity, Extended Functional Dependencies(EFDs), Quasi-identifier(QI), uncertain data, integrity constraint, sensitive attribute

中图分类号: