[1] Kashin B. The Widths of Certain Finite Dimensional Sets and Classes of Smooth Functions[J]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1977, 41(2): 334-351. [2] Donoho D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [3] Candès E J, Romberg J, Tao Terence. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. [4] Rauhut H, Schass K, Vandergheynst P. Compressed Sensing and Redundant Dictionaries[J]. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219. [5] Baraniuk R, Steeghs P. Compressive Radar Imaging[C]//Proc. of IEEE Radar Conference. Houston, USA: IEEE Press, 2007: 128- 133. [6] Duarte M, Davenport M, Takbar D, et al. Single-pixel Imaging via Compressive Sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 82-91. [7] Sheikh M, Milenkovic O, Baraniuk R. Designing Compressive Sensing DNA Microarrays[C]//Proc. of CAMPSAP’07. Washington D. C., USA: IEEE Press, 2007: 141-144. [8] Borgnat P, Flandrin P. Time-frequency Localization from Sparsity Constraints[C]//Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, USA: IEEE Press, 2008: 3785-3788. [9] Willett R, Gehm M, Brady D. Multiscale Reconstruction for Computational Spectral Imaging[EB/OL]. [2011-04-12]. http:// people.ee.duke.edu/~willett/papers/WillettGehmBrady_SpectralImCS.pdf. [10] Ma Jianwei, le Dimet F X. Deblurring from Highly Incomplete Measurements for Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 792-802. [11] Lustig M, Donoho D L, Pauly J M. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. [12] Shamsi D, Boufounos P, Koushanfar F. Noninvasive Leakage Power Tomography of Integrated Circuits by Compressive Sensing[C]//Proc. of the 13th International Symposium on Low Power Electronics and Design. Bangalore, India: [s. n.], 2008: 341- 346. [13] Liu Danhua, Shi Guangming, Gao Dahua. A New Method for Signal Sparse Decomposition[C]//Proc. of Int’l Symposium on Intelligent Signal Processing and Communications Systems. [S. l.]: IEEE Press, 2007: 45-48. [14] Shi Guangming, Lin Jie, Chen Xuyang, et al. UWB Echo Signal Detection with Ultra-low Rate Sampling Based on Compressed Sensing[J]. IEEE Transactions on Circuits and Systems II, 2008, 55(4): 379-383. [15] Wang Liangjun, Wu Xiaolin, Shi Guangming. A Compressive Sensing Approach of Multiple Descriptions for Network Multimedia Communication[C]//Proc. of the 10th International Workshop on Multimedia Signal Processing. [S. l.]: IEEE Press, 2008: 445-449. [16] 石光明, 刘丹华, 高大化, 等. 压缩感知理论及其研究进展[J]. 电子学报, 2009, 37(5): 1070-1081. [17] 刘丹华, 石光明, 周佳社, 等. 基于Compressed Sensing 框架的图像多描述编码方法[J]. 红外与毫米波学报, 2009, 28(4): 298- 302. [18] Zhang Yifu, Mei Shunliang, Chen Quqing, et al. A Novel Image/ Video Coding Method Based on Compressed Sensing Theory[C]// Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing. [S. l.]: IEEE Press, 2008: 1361-1364. [19] 尹忠科, 解 梅, 王建英. 基于稀疏分解的图像去噪[J]. 电子科技大学学报, 2006, 35(6): 876-878. [20] 傅 霆, 尧德中. 稀疏分解的加权迭代方法及其初步应用[J]. 电子学报, 2004, 32(4): 567-570. [21] 李小波. 基于压缩感知的测量矩阵研究[D]. 北京: 北京交通大学, 2010. [22] 乔雅莉. 基于稀疏表示的图像去噪算法研究[D]. 北京: 北京交通大学, 2009. [23] 高 睿. 基于压缩传感的匹配追踪重建算法研究[D]. 北京: 北京交通大学, 2009. [24] 周灿梅. 基于压缩感知的信号重建算法研究[D]. 北京: 北京交通大学, 2010. [25] Wright J, Yang Allen, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. [26] 高 敏. 基于CS的SAR目标识别[D]. 西安: 西安电子科技大学, 2010. [27] 杨荣根, 任明武, 杨静宇. 基于稀疏表示的人脸识别方法[J]. 计算机科学, 2010, 37(9): 267-269. [28] Turk M, Pentland A. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. [29] Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
|