作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于SLPP与MKSVM的痛苦表情识别

张 伟1,黄 炜2,夏利民1,罗大庸1   

  1. (1. 中南大学信息科学与工程学院,长沙 410075;2. 长沙航空职业技术学院计算机系,长沙 410124)
  • 收稿日期:2012-10-29 出版日期:2013-12-15 发布日期:2013-12-13
  • 作者简介:张 伟(1972-),男,博士研究生,主研方向:模式识别,计算视觉;黄 炜,讲师、硕士;夏利民、罗大庸,教授、博士生导师
  • 基金资助:
    国家博士点基金资助项目(20090162110057);湖南省科技计划基金资助项目(2011GK3213)

Pain Expression Recognition Based on SLPP and MKSVM

ZHANG Wei 1, HUANG Wei 2, XIA Li-min 1, LUO Da-yong 1   

  1. (1. College of Information Science and Engineering, Central South University, Changsha 410075, China; 2. Department of Computer, Changsha Aeronautical Vocational and Technical College, Changsha 410124, China)
  • Received:2012-10-29 Online:2013-12-15 Published:2013-12-13

摘要: 为提高痛苦表情识别的准确率,提出一种基于监督保局投影(SLPP)与多核线性混合支持向量机(MKLMSVM)的识别方法。引入先验类标签信息的SLPP获取痛苦表情特征,以解决保局投影方法在未使用先验类标签信息的情况下忽略类内局部结构的问题,并采用MKLMSVM实现痛苦表情的分类。实验结果表明,该方法的识别准确率可达88.56%,明显优于主动外观模型方法,与一般的支持向量机分类相比,可以提升决策函数的可解释性及分类性能。

关键词: 痛苦表情识别, 监督保局投影, 先验类标签, 多核支持向量机, 多核线性混合, 主动外观模型

Abstract: In order to improve the accuracy rate of pain expression recognition, a method is proposed based on Supervised Locality Preserving Projections(SLPP) and Multiple Kernel Linear Mixture Support Vector Machines(MKLMSVM). The SLPP using prior class label information is adopted for extracting feature of pain expression, which can solve the problem that LPP ignores the within-class local structure without the use of the prior class label information, and then MKLMSVM is employed for recognizing pain expression. Experimental results demonstrate that the accuracy of the proposed approach can reach 88.56%, and is significantly better than the Active Appearance Models(AAM), compared with normal Support Vector Machine(SVM), which can improve the interpretability of decision function and classifier performance.

Key words: pain expression recognition, Supervised Locality Preserving Projections(SLPP), prior class label, Multiple Kernel Support Vector Machines(MKSVM), multiple kernel linear mixture, Active Appearance Models(AAM)

中图分类号: