作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于划分融合与视角加权的极大熵聚类算法

张丹丹,邓赵红,蒋亦樟,王士同   

  1. (江南大学数字媒体学院,江苏 无锡 214122)
  • 收稿日期:2015-02-04 出版日期:2016-04-15 发布日期:2016-04-15
  • 作者简介:张丹丹(1992-),女,硕士研究生,主研方向为人工智能、神经模糊计算;邓赵红,副教授、博士;蒋亦樟,博士研究生;王士同,教授、博士生导师。
  • 基金资助:
    国家自然科学基金资助面上项目(61170122);江苏省杰出青年基金资助项目(BK20140001);新世纪优秀人才支持计划基金资助项目(NCET120882)。

Maximum Entropy Clustering Algorithm Based on Partition Fusion and View-weighting

ZHANG Dandan,DENG Zhaohong,JIANG Yizhang,WANG Shitong   

  1. (School of Digital Media,Jiangnan University,Wuxi,Jiangsu 214122,China)
  • Received:2015-02-04 Online:2016-04-15 Published:2016-04-15

摘要: 针对极大熵聚类算法在处理多视角聚类任务时存在的局限性,引入划分融合和视角加权技术,提出一种改进的极大熵聚类算法。通过对视角分配权重体现其重要程度,在此基础上对每个视角进行单独划分,利用融合权重矩阵实现视角划分的融合,并采用新的集成策略得到全局聚类结果。在人工数据集和UCI数据集上的实验结果表明,与极大熵聚类算法、基于多任务的组合K-means算法等相比,该算法具有更好的多视角聚类性能。

关键词: 极大熵聚类, 多视角聚类, 划分融合, 视角加权, 权重矩阵

Abstract: Aiming at the limitation to effectively realize the view fusion in the multi-view clustering task for Maximum Entropy Clustering(MEC),this paper proposes an improved view-weighting MEC algorithm by introducing partition fusion and view-weighting.This method assigns a weight of each view to show the importance of each view.And it sets the partition matrix of each view,and the view-fusion in each view partition is made by a view-fusion weighting matrix.Finally,it proposes a new integration strategy to obtain the global partition result.Experimental results on synthetic datasets and UCI datasets show that the proposed algorithm outperforms MEC algorithm and CombKM algorithm in dealing with multi-view clustering task.

Key words: Maximum Entropy Clustering(MEC), multi-view clustering, partition fusion, view-weighting, weight matrix

中图分类号: