作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 移动互联与通信技术 • 上一篇    下一篇

基于排队论的低功耗无线传感技术及其应用

王志繁,叶庆卫,周宇,王晓东   

  1. (宁波大学 信息科学与工程学院,浙江 宁波 315211)
  • 收稿日期:2015-09-10 出版日期:2016-08-15 发布日期:2016-08-15
  • 作者简介:王志繁(1991-),男,硕士,主研方向为无线传感器网络;叶庆卫,副教授;周宇,教授;王晓东,副教授。
  • 基金资助:
    国家自然科学基金资助项目(61071198);浙江省自然科学基金资助项目(LY13F010015);浙江省科技创新团队基金资助项目(2013TD21)。

Low-power Wireless Sensing Technology and Its Application Based on Queuing Theory

WANG Zhifan,YE Qingwei,ZHOU Yu,WANG Xiaodong   

  1. (School of Information Science and Engineering,Ningbo University,Ningbo,Zhejiang 315211,China)
  • Received:2015-09-10 Online:2016-08-15 Published:2016-08-15

摘要: 无线传感器网络中多数低功耗协议通过控制休眠时间来降低系统功耗,而网络系统的多样性使其难以准确预估路由节点的最佳休眠时间。为此,引入排队论模型对局部路由节点的最佳休眠时间进行预测,从而增强路由节点的低功耗性能。针对单路由节点的情况,根据排队论进行建模估算休眠时间,通过Zigbee技术搭建具体的无线传感器网络系统并由硬件控制路由节点的休眠。将该系统应用到茶山温湿度检测项目中,利用网关从Internet远程网页监测茶山温湿度。应用结果表明,该方法可有效降低系统功耗。

关键词: 低功耗, 排队论, 路由节点, 最佳休眠时间, 数据采集, 网站监控

Abstract: In wireless sensor networks,system with low power consumption is achieved by controlling the sleep time in many of current low-power protocols.Because of the complex and diverse network system,accurately estimating the sleep time of routing node is difficult.In order to solve the above-mentioned technical difficulty,a queuing theory model is introduced in this paper to estimate the best sleep time of local routing node,thereby enhancing the performance of low-power routing node.Firstly,for a single routing node,the queuing theory is employed for mathematical modeling to estimate the sleep time.Secondly,the Zigbee technology is utilized to build a specific wireless sensor network system,and certain hardware is applied to control the sleep time of routing node.Finally,the system is applied into Dasan project to detect the temperature and humidity,using the gateway to monitor the detected parameters remotly.It can be seen from the results that the proposed method reduces energy consumption of the system significantly.

Key words: low-power, queuing theory, routing node, the best sleep time, data collection, website monitoring

中图分类号: