作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

在线社交网络的自适应UNI采样方法

尤枫,曹天亮,卢罡   

  1. (北京化工大学 信息科学与技术学院,北京 100029)
  • 收稿日期:2016-03-23 出版日期:2017-04-15 发布日期:2017-04-14
  • 作者简介:尤枫(1963—),男,副教授,主研方向为人工智能、软件测试;曹天亮(通信作者),硕士;卢罡,讲师、博士。
  • 基金资助:
    北京高等学校青年英才计划项目(YETP0506)。

Adaptive UNI Sampling Method for Online Social Network

YOU Feng,CAO Tianliang,LU Gang   

  1. (College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China)
  • Received:2016-03-23 Online:2017-04-15 Published:2017-04-14

摘要: 在线社交网络采样方法常作为其他采样方法的评估基准,但是该方法采样命中率和采样效率较低,影响了其应用。为此,提出一种自适应UNI采样方法。该方法将用户ID系统空间划分为若干区间进行采样,根据各区间命中率自适应地调节在各区间的采样概率,以提高采样命中率和效率。设定采样概率下限阈值解决冷启动问题,同时利用区间的采样率调节区间采样概率,防止陷入局部最优。将该方法应用于新浪微博的采样数据进行验证,实验结果表明,该方法可提高采样效率和采样命中率。

关键词: 在线社交网络, 采样方法, UNI方法, 自适应方法, 区间划分

Abstract: Online Social Network(OSN)sampling method is usually used as the benchmark to evaluate other sampling methods.However,the poor performance of UNI limits its application.In this paper,a sampling method called adaptive UNI is proposed.In this method,the whole space of user ID system is divided into intervals.The probability of sampling is adaptively adjusted in each interval according to the real hit rate of the interval.In this process,a threshold is set as the lower limit to solve the cold start problem,while the sampling rate of the interval is used to avoid local optimum.The validity of the method is proved by applying it to real sampling from Weibo.Experimental results show that the method can improve the sampling efficiency and hit rate.

Key words: Online Social Network(OSN), sampling method, UNI method, adaptive method, interval partition

中图分类号: