作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (11): 216-218.

• 人工智能及识别技术 • 上一篇    下一篇

基于最大熵模型的汉语依存分析

刘贵全,曾宇斌   

  1. 中国科学技术大学计算机科学技术系,合肥230027
  • 出版日期:2006-06-05 发布日期:2006-06-05

Chinese Dependency Parsing with Maximum Entropy Principle

LIU Guiquan, ZENG Yubin   

  1. Department of Computer Science & Technology, University of Science and Technology of China, Hefei 230027
  • Online:2006-06-05 Published:2006-06-05

摘要: 采用最大熵模型实现中文依存语法的分析。用自底而上的方式构建语句的依存关系树,构建过程每一步在向左连接、向右连接以及不连接3 种动作选取其一。用最大熵原理判断每个动作的概率,得到依存树中各边的概率,然后找出具有最大概率的依存关系树。实验结果表明,该模型具有较好的分析精度。目前,该模型已被应用于基于自然语言的信息检索项目中。

关键词: 统计句法分析;依存文法;最大熵原理

Abstract: This paper uses maximum entropy (ME) model to parse chinese sentence with dependency grammar. The dependency-tree is constructed with a bottom-up process, and one of the three actions (left-concatenation, right-concatenation, non-concatenation) is selected in every step of the constructing process. The maximum entropy principle is used to compute the probability of the actions. Thus the dependency-tree with maximum probability can be obtained. The model is experimentally proved satisfying in precision and has been applied in a Chinese natural language retrieval project.

Key words: Statistical parsing; Dependency grammar; Maximum entropy principle