作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (11): 225-227,247.

• 人工智能及识别技术 • 上一篇    下一篇

人脸识别特征提取方法和相似度匹配方法研究

郭 瑞 1,张淑玲2,汪小芬3   

  1. 1. 海军工程大学电子工程系,武汉 430033;2. 湖北经济学院计算机与电子科学系,武汉430000;3. 武汉大学信息管理学院,武汉430000
  • 出版日期:2006-06-05 发布日期:2006-06-05

Study of Feature Extraction and Similarity Match Method on Face Recognition

GUO Rui1, ZHANG Shuling2, WANG Xiaofen3   

  1. 1. Department of Electronic Engineering, Naval University of Engineering, Wuhan 430033; 2. Department of Computer and Electronic Science, Hubei Economic School, Wuhan 430000; 3. School of Information Management, Wuhan University, Wuhan 430000
  • Online:2006-06-05 Published:2006-06-05

摘要: 横向比较特征提取方法,综合考虑认证率和特征提取时间两方面因素,该文认为特征脸结合线性判别分析方法是研究的4 种特征提取方法中最优的方法。通过对投影空间维数的研究,最佳投影空间维数同数据库本身类内图像的相似程度和每一类的样本数目同方向增长,它们之间存在定性关系而非定量关系。相似度匹配方法的研究结果表明余弦距离分类器分类效果最佳。

关键词: 人脸识别;特征提取;距离分类器;线性判别分析

Abstract: Eigenfaces combining linear discriminant analysis method is taken as the best by comparing different methods, consideringsynthetically verification rate and feature extraction time. Through study of projection space dimensions, it is indicated that the best projection dimension is connected with the similarity between images of one kind of the data base, with the number of samples of one kind. But their relation is qualitative, not quantitative. Studying of similarity match methods, it shows that cosine distance is best for classification.

Key words: Face recognition; Feature extraction; Distance-classifier; Linear discriminant analysis (LDA)