作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2006, Vol. 32 ›› Issue (7): 146-148.

• 安全技术 • 上一篇    下一篇

基于信息增益率的决策树对入侵检测的改进

唐 谦,张大方,黄 昆   

  1. 湖南大学计算机与通信学院,长沙 410082
  • 出版日期:2006-04-05 发布日期:2006-04-05

Using Gain-ratio Based Decision Trees to Improve Intrusion Detection

TANG Qian, ZHANG Dafang, HUANG Kun   

  1. School of Computer and Communication, Hunan University, Changsha 410082
  • Online:2006-04-05 Published:2006-04-05

摘要: 用构造决策树的方法来对入侵规则进行分类组织,将并行处理的机制引入到数据包与入侵规则集的匹配检测过程中。该文对于构造入侵规则决策树的过程,采用信息增益率为新的分类属性选择标准,并用它替代了原有的信息增益标准。实验证明,对于某些特定的攻击类型,在产生相同告警数量的前提下,采用信息增益率的检测引擎比采用信息增益的检测引擎,在检测速度上有明显的提高,有力地提高了基于特征的入侵检测性能,可及时地发现入侵行为。

关键词: 入侵检测;规则;决策树;信息增益

Abstract: Using the decision trees approach to classify the intrusion rules, the idea is to introduce more parallelism when checking rules. This paper presents a new attribute selection metric, called the gain-ratio criterion to replace the gain criterion. For the certain particular attack type,experiment evaluation shows that the detection engine utilized gain-ratio criterion significantly improves the speed of detection process, compared to the gain criterion. The approach improves the performance of the signature-based intrusion detection, detects intrusion behavior in time.

Key words: Intrusion detection; Rule; Decision tree; Information gain