摘要: 用构造决策树的方法来对入侵规则进行分类组织,将并行处理的机制引入到数据包与入侵规则集的匹配检测过程中。该文对于构造入侵规则决策树的过程,采用信息增益率为新的分类属性选择标准,并用它替代了原有的信息增益标准。实验证明,对于某些特定的攻击类型,在产生相同告警数量的前提下,采用信息增益率的检测引擎比采用信息增益的检测引擎,在检测速度上有明显的提高,有力地提高了基于特征的入侵检测性能,可及时地发现入侵行为。
关键词:
入侵检测;规则;决策树;信息增益
Abstract: Using the decision trees approach to classify the intrusion rules, the idea is to introduce more parallelism when checking rules. This paper presents a new attribute selection metric, called the gain-ratio criterion to replace the gain criterion. For the certain particular attack type,experiment evaluation shows that the detection engine utilized gain-ratio criterion significantly improves the speed of detection process, compared to the gain criterion. The approach improves the performance of the signature-based intrusion detection, detects intrusion behavior in time.
Key words:
Intrusion detection; Rule; Decision tree; Information gain
唐 谦,张大方,黄 昆. 基于信息增益率的决策树对入侵检测的改进[J]. 计算机工程, 2006, 32(7): 146-148.
TANG Qian, ZHANG Dafang, HUANG Kun. Using Gain-ratio Based Decision Trees to Improve Intrusion Detection[J]. Computer Engineering, 2006, 32(7): 146-148.