作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2009, Vol. 35 ›› Issue (3): 202-204.

• 人工智能及识别技术 • 上一篇    下一篇

基于Co-Training的协同目标跟踪

王 路,卓 晴,王文渊   

  1. (清华大学自动化系,北京 100084)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-02-05 发布日期:2009-02-05

Collaborative Object Tracking Based on Co-Training

WANG Lu, ZHUO Qing, WANG Wen-yuan   

  1. (Department of Automation, Tsinghua University, Beijing 100084)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-02-05 Published:2009-02-05

摘要: 运动目标跟踪是计算机视觉的核心问题之一,广泛应用于诸多领域。该文提出一种基于Co-Training半监督学习框架的目标跟踪方法。该方法融合2种互相独立的特征信息来描述目标模型,采用Co-Training来协同更新模型,有效避免了现有方法的误差累积问题。实验结果证明,该方法在复杂场景下仍能实现稳定有效的跟踪。

关键词: 目标跟踪, 联合训练, 半监督学习, 特征融合

Abstract: Moving object tracking is a key problem in computer vision and has many applications in various fields. This paper proposes a collaborative tracking method based on Co-Training frame work. The method fuses information from two types of features space to describe the object. The model is updated with Co-Training, which avoids the error accumulation problem. The experiment demonstrates the performance of the method under complex scenarios.

Key words: object tracking, Co-Training, semi-supervised learning, feature fusion

中图分类号: