摘要: 针对IADFCM算法在运算过程中忽略区间中点和半宽对区间数分析的问题,给出基于中点、半宽含权重区间数间的欧氏距离,提出一种改进的聚类分析算法,对模拟数据集和实际数据集分别进行仿真实验,实验结果表明,该算法是有效的。
关键词:
模糊C均值算法,
IADFCM算法,
区间属性数据,
含噪数据
Abstract: Aiming at the problems that it ignores the different effect which the median and wide of interval play on the analysis of interval number, this paper presents a new measure of distance based on the median and wide of interval with different weight. On basis of this, a revised clustering algorithm is proposed. The experiments of the simulative and practical datasets are made by this algorithm and IADFCM. Experimental results indicate this algorithm is effective.
Key words:
Fuzzy C-Means(FCM) algorithm,
IADFCM algorithm,
interval attribute data,
noisy data
中图分类号:
李月娥;夏士雄;周 勇. 一种含噪数据FCM聚类算法[J]. 计算机工程, 2009, 35(9): 25-27.
LI Yue-e; XIA Shi-xiong; ZHOU Yong. FCM Clustering Algorithm for Noisy Data[J]. Computer Engineering, 2009, 35(9): 25-27.