1 |
KOZHISSERI S, BIKDASH M. Spectral features for the classification of civilian vehicles using acoustic sensors[C]// Proceedings of the IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems. Washington D.C., USA: IEEE Press, 2009: 93-100.
|
2 |
|
3 |
WILLIAM P E, HOFFMAN M W. Classification of military ground vehicles using time domain harmonics' amplitudes. IEEE Transactions on Instrumentation and Measurement, 2011, 60(11): 3720- 3731.
doi: 10.1109/TIM.2011.2135110
|
4 |
WU H W, MENDEL J M. Classification of battlefield ground vehicles using acoustic features and fuzzy logic rule-based classifiers. IEEE Transactions on Fuzzy Systems, 2007, 15(1): 56- 72.
doi: 10.1109/TFUZZ.2006.889760
|
5 |
杜绍研. 基于模糊神经网络的车辆声音信号识别研究. 自动化与仪器仪表, 2016,(6): 3- 4.
|
|
DU S Y. Research on vehicle sound signal recognition based on fuzzy neural network. Automation & Instrumentation, 2016,(6): 3- 4.
|
6 |
YASSIN A I, MOHD SHARIFF K K, KECHIK M A, et al. Acoustic vehicle classification using mel-frequency features with long short-term memory neural networks. TEM Journal, 2023, 12(3): 1490- 1496.
|
7 |
SUN L, ZHANG Z B, TANG H Y, et al. Vehicle acoustic and seismic synchronization signal classification using long-term features. IEEE Sensors Journal, 2023, 23(10): 10871- 10878.
doi: 10.1109/JSEN.2023.3263572
|
8 |
MOHINE S, BANSOD B S, BHALLA R, et al. Acoustic modality based hybrid deep 1D CNN-BiLSTM algorithm for moving vehicle classification. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16206- 16216.
doi: 10.1109/TITS.2022.3148783
|
9 |
李翔, 王艳, 李宝清. 基于FVC-CNN模型的野外车辆声信号分类. 中国科学院大学学报, 2023, 40(2): 208- 216.
|
|
LI X, WANG Y, LI B Q. Field vehicle signal classification based on FVC-CNN. Journal of University of Chinese Academy of Sciences, 2023, 40(2): 208- 216.
|
10 |
ABDEL-HAMID O, MOHAMED A R, JIANG H, et al. Convolutional neural networks for speech recognition. ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533- 1545.
|
11 |
范裕莹, 李成娟, 易强, 等. 基于改进TCN模型的野外运动目标分类. 计算机工程, 2021, 47(9): 106- 112.
URL
|
|
FAN Y Y, LI C J, YI Q, et al. Classification of moving targets in fields based on improved TCN model. Computer Engineering, 2021, 47(9): 106- 112.
URL
|
12 |
CAKIR E, PARASCANDOLO G, HEITTOLA T, et al. Convolutional recurrent neural networks for polyphonic sound event detection. ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(6): 1291- 1303.
|
13 |
TAKAHASHI N, MITSUFUJI Y. Multi-scale multi-band densenets for audio source separation[C]//Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. Washington D.C., USA: IEEE Press, 2017: 21-25.
|
14 |
|
15 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
16 |
MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 561-580.
|
17 |
赵艺. 基于路径签名的改进时空图卷积网络. 计算机工程与科学, 2022, 44(12): 2213- 2219.
|
|
ZHAO Y. Signature spatial improved temporal graph convolutional network. Computer Engineering & Science, 2022, 44(12): 2213- 2219.
|
18 |
BAI S, KOLTER J Z, KOLTUN V. Deep equilibrium models[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 690-701.
|
19 |
ALSALLAKH B, KOKHLIKYAN N, MIGLANI V, et al. Mind the pad—CNNs can develop blind spots[EB/OL]. [2023-09-05]. http://arxiv.org/abs/2010.
|
20 |
MESAROS A, HEITTOLA T, DIKMEN O, et al. Sound event detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2015: 151-155.
|
21 |
ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2023-09-05]. http://arxiv.org/abs/1710.
|
22 |
PARK D S, CHAN W, ZHANG Y, et al. SpecAugment: a simple data augmentation method for automatic speech recognition[EB/OL]. [2023-09-05]. https://arxiv.org/pdf/1904.08779.
|
23 |
KONG Q Q, CAO Y, IQBAL T, et al. PANNs: large-scale pretrained audio neural networks for audio pattern recognition. ACM Transactions on Audio, Speech, and Language Processing, 2020, 28, 2880- 2894.
|
24 |
TOKOZUME Y, USHIKU Y, HARADA T. Between-class learning for image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 5486-5494.
|
25 |
FERRARO A, BOGDANOV D, JAY X S, et al. How low can you go? reducing frequency and time resolution in current CNN architectures for music auto-tagging[C]//Proceedings of the 28th European Signal Processing Conference. Washington D.C., USA: IEEE Press, 2021: 131-135.
|
26 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 1314-1324.
|
27 |
RADOSAVOVIC I, JOHNSON J, XIE S N, et al. On network design spaces for visual recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 1882-1890.
|