1 |
赵才荣, 齐鼎, 窦曙光, 等. 智能视频监控关键技术: 行人再识别研究综述. 中国科学(信息科学), 2021, 51(12): 1979- 2015.
|
|
ZHAO C R, QI D, DOU S G, et al. Key technology for intelligent video surveillance: a review of person re-identification. Scientia Sinica (Informationis), 2021, 51(12): 1979- 2015.
|
2 |
VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2001: 377-390.
|
3 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 886-893.
|
4 |
ASA B H, HORN D, SIEGELMANN H T, et al. A support vector method for clustering[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2000.367-373.
|
5 |
邓广宏. 基于深度学习的行人检测方法研究[D]. 赣州: 江西理工大学, 2020.
|
|
DENG G H. Research on pedestrian detection method based on deep learning[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. (in Chinese)
|
6 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
doi: 10.1109/5.726791
|
7 |
王皓洁, 孙家炜. 基于注意力机制的多尺度实时人脸检测方法. 现代计算机, 2021(15): 42-47, 60.
|
|
WANG H J, SUN J W. Multi-scale real-time face detection method based on attention mechanism. Modern Computer, 2021(15): 42-47, 60.
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press: 2016: 778-779.
|
9 |
黄键, 徐伟峰, 苏攀, 等. 基于YOLOX-S的车窗状态识别算法. 吉林大学学报(理学版), 2023, 61(4): 875- 882.
|
|
HUANG J, XU W F, SU P, et al. Car windows state recognition algorithm based on YOLOX-S. Journal of Jilin University (Scicence Edition), 2023, 61(4): 875- 882.
|
10 |
|
11 |
|
12 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C]//Proceedings of 2016 European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
13 |
仇翔, 王国顺, 赵杨杨, 等. 基于YOLOv3和EPnP算法的多盒姿态估计. 计算机测量与控制, 2021, 29(2): 126- 131.
|
|
QIU X, WANG G S, ZHAO Y Y, et al. Multi-box pose estimation based on YOLOv3 and EPnP algorithm. Computer Measurement and Control, 2021, 29(2): 126- 131.
|
14 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press: 2017: 7263-7271.
|
15 |
|
16 |
|
17 |
LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2023-04-15]. https://arxiv.org/abs/2209.02976.
|
18 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press: 2023: 7464-7475.
|
19 |
|
20 |
GIRHSICK R. Fast R-CNN[C]//Proceedings of the IEEE Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 1440-1448.
|
21 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386- 397.
doi: 10.1109/TPAMI.2018.2844175
|
22 |
JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/YOLOv5: v3.1-bug fixes and performance improvements[EB/OL]. (2020-10-29)[2023-04-15]. https://zenodo.org/record/4154370.
|
23 |
王浩臣, 辛月兰, 盛月, 等. 基于改进YOLOv5x的遥感图像目标检测算法. 激光杂志, 2024, 45(2): 95- 100.
|
|
WANG H C, XING Y L, SHENG Y, et al. Remote sensing image target detection algorithm based on YOLOv5x. Laser Journal, 2024, 45(2): 95- 100.
|
24 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|
25 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press: 2017: 2117-2125.
|
26 |
SHEN C H. Adaptively spatial feature fusion for object detection. Pattern Recognition Letters, 2019(137): 27- 37.
|
27 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993- 13000.
doi: 10.1609/aaai.v34i07.6999
|
28 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized Intersection over Union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press: 2019: 658-666.
|
29 |
刘竣文, 张永军, 李智, 等. 基于RDM-YOLOv3的头部检测. 激光与光电子学进展, 2022, 59(8): 0815011.
|
|
LIU J W, ZHANG Y J, LI Z, et al. Head detection based on RDM-YOLOv3. Laser & Optoelectronics Progress, 2022, 59(8): 0815011.
|
30 |
|
31 |
LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press: 2023: 6153-6162.
|
32 |
ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press: 2019: 9308-9316.
|
33 |
FANG Y, LIAO B, WANG X, et al. You Only Look at One Sequence: rethinking transformer in vision through object detection[EB/OL]. [2023-04-15]. https://arxiv.org/abs/2106.00666.
|