作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (3): 216-228. doi: 10.19678/j.issn.1000-3428.0068753

• 图形图像处理 • 上一篇    下一篇

基于改进YOLOv5的密集行人检测算法

胡倩1,2, 皮建勇2,*(), 胡伟超1,2, 黄昆1,2, 王娟敏1,2   

  1. 1. 贵州大学公共大数据国家重点实验室, 贵州 贵阳 550025
    2. 贵州大学计算机科学与技术学院, 贵州 贵阳 550025
  • 收稿日期:2023-11-02 出版日期:2025-03-15 发布日期:2024-04-25
  • 通讯作者: 皮建勇
  • 基金资助:
    贵州省科技支撑计划(黔科合支撑[2023]一般430)

Dense Pedestrian Detection Algorithm Based on Improved YOLOv5

HU Qian1,2, PI Jianyong2,*(), HU Weichao1,2, HUANG Kun1,2, WANG Juanmin1,2   

  1. 1. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China
    2. School of Computer Science and Technology, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2023-11-02 Online:2025-03-15 Published:2024-04-25
  • Contact: PI Jianyong

摘要:

针对现有的行人检测方法对于密集行人或小目标行人检测精度低的问题, 提出一种基于YOLOv5的综合改进算法模型YOLOv5_Conv-SPD_DAFPN。首先, 针对小目标或密集行人的特征信息易丢失这一问题, 在骨干网络中引入Conv-SPD网络模块替代原有的跨步卷积, 有效缓解特征信息丢失的问题; 其次, 针对非相邻特征图不直接融合从而引起特征融合率较低的问题, 提出新的双层渐进金字塔网络(DAFPN), 提高行人检测的准确性和精度; 最后, 基于EIoU_Loss和CIoU_Loss引入EfficiCIoU_Loss定位损失函数, 以调整和提高帧回归率, 促进网络模型更快收敛。模型在CrowdHuman和WiderPerson行人数据集上相比于原YOLOv5模型, mAP@0.5、mAP@0.5∶0.95分别提升了3.9、5.3百分点和2.1、2.1百分点; 引入EfficiCIoU_Loss后, 模型收敛速度分别提升了11%、33%。这些改进使得基于YOLOv5的密集行人检测在特征信息保留、多尺度融合和损失函数优化等方面都取得了显著进展, 提高了其在实际应用中的性能和效率。

关键词: 密集行人检测, 小目标行人检测, Conv-SPD网络, 双层渐进特征金字塔网络, EfficiCIoU_Loss损失函数

Abstract:

Considering the problem of low accuracy in existing pedestrian detection methods for dense or small target pedestrians, this study proposes a comprehensive improved algorithm model called YOLOv5_Conv-SPD_DAFPN based on You Only Look Once (YOLO) v5, a non-strided Convolution Space-to-Depth (Conv-SPD), and Double Asymptotic Feature Pyramid Network (DAFPN). First, to address the issue of feature information loss for small targets or dense pedestrians, a Conv-SPD network module is introduced into the backbone network, to replace the original skip convolution, thereby effectively mitigating the problem of feature information loss. Second, to solve the problem of low feature fusion rates caused by nonadjacent feature maps not directly merging, this study proposes DAFPN to significantly improve the accuracy and precision of pedestrian detection. Finally, based on Efficient Intersection over Union (EIoU) and Complete-IoU (CIoU) losses, this study introduces the EfficiCIoU_Loss location loss function to adjust and accelerate the frame regression rate, thereby promoting faster convergence of the network model. The algorithm model improved mAP@0.5 and mAP@0.5∶0.95 by 3.9, 5.3 and 2.1, 2.1 percentage points, respectively, compared to the original YOLOv5 model on the CrowdHuman and WiderPerson pedestrian datasets. After introducing EfficiCIoU_Loss, the model convergence speed improved by 11% and 33%, respectively. These innovative improvements have led to significant progress in dense pedestrian detection based on YOLOv5 in terms of feature information retention, multiscale fusion, and loss function optimization, thereby enhancing performance and efficiency in practical applications.

Key words: dense pedestrian detection, small target pedestrian detection, Conv-SPD network, Double Asymptotic Feature Pyramid Network (DAFPN), EfficiCIoU_Loss loss function